Abstract

Conditions are determined for which optical interconnects can transmit information at a higher data rate and consume less power than the equivalent electrical interconnections. The analysis is performed for free-space optical intrachip communication links. Effects of scaling circuit dimensions, presence of signal fan-out, and the use of light modulators as optical signal transmitters are also discussed.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
    [CrossRef]
  2. K. C. Saraswat, F. Mohammadi, “Effect of Scaling of Interconnections on the time delay of VLSI Circuits,” IEEE Trans. Electron Devices ED-29, 645 (1982).
    [CrossRef]
  3. D. S. Gardner, J. D. Meindl, K. C. Saraswat, “Interconnection and Electromigration Scaling Theory,” IEEE Trans. Electron Devices ED-34, 633 (1987).
    [CrossRef]
  4. L. A. Bergman et al., “Holographic Optical Interconnects in VLSI,” Opt. Eng. 25, 1109 (1986).
    [CrossRef]
  5. W. H. Wu et al., “Implementation of Optical Interconnections for VLSI,” IEEE Trans Electron Devices ED-34, 706 (1987).
    [CrossRef]
  6. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical Imaging Applied to Microelectric Chip-to-Chip Interconnections,” Appl. Opt. 24, 2851 (1985).
    [CrossRef] [PubMed]
  7. R. Barakat, J. Reif, “Lower Bounds on the Computational Efficiency of Optical Computing Systems,” Appl. Opt. 26, 1015 (1987).
    [CrossRef] [PubMed]
  8. S. Sakai, H. Shiraishi, M. Umeno, “AlGaAs/GaAs Stripe Laser Diodes Fabricated on Si Substrates by MOCVD,” IEEE J. Quantum Electron. QE-23, 1080 (1987).
    [CrossRef]
  9. S. Sakai, X. W. Hu, M. Umeno, “AlGaAs/GaAs Transverse Junction Stripe Lasers Fabricated on Si Substrates Using Superlattice Intermediate Layers by MOCVD,” IEEE J. Quantum Electron. QE-23, 1085 (1987).
    [CrossRef]
  10. C. Mead, L. Conway, Introduction to VLSI Systems, (Addison-Wesley, Menlo Park, CA1980), pp. 11–12.
  11. T. Quarles, A. R. Newton, D. O. Pederson, A. Sangiovanni-Vincentelli, SPICE Version 3A7 User’s Guide (U. California, Berkeley, 23Sept.1986).
  12. L. A. Glasser, D. W. Dobberpuhl, The Design and Analysis of VLSI Circuits, (Addison-Wesley, Menlo Park, CA, 1985), pp. 139–141.
  13. “The MOSIS System (What It is and How to Use It),” Report ISI/TM-84-128, Information Sciences Institute, U. Southern California, Marina del Rey, CA 90292 (Mar.1984).
  14. P. R. Haugen, S. Rychnovsky, A. Husain, L. D. Hutcheson, “Optical Interconnects for High Speed Computing,” Opt. Eng. 25, 1076 (1986).
    [CrossRef]
  15. T. Shibutani et al., “A Novel High-Power Laser Structure with Current-Blocked Regions Near Cavity Facets,” IEEE J. Quantum Electron. QE-23, 760 (1987).
    [CrossRef]
  16. Ref. 12, pp. 135–136.
  17. Ref. 10, pp. 341–342.
  18. P. L. Derry, A. Yariv, “Ultralow-Threshold Graded-Index Separate-Confinement Single Quantum Well Buried Heterostructure (Al,Ga)As Lasers with High Reflectivity Coatings,” Appl. Phys. Lett. 50, 1773 (1987).
    [CrossRef]
  19. R. E. Brooks, “Micromechanical Light Modulators on Silicon,” Opt. Eng. 24, 101 (1985).
    [CrossRef]
  20. E. Bradley, P. K. L. Yu, “Proposed Modulator for Global VLSI Optical Interconnect Network,” Jpn. J. Appl. Phys. 26, L971 (1987).
    [CrossRef]
  21. G. D. Boyd, D. A. B. Miller, D. S. Chemla, S. L. McCall, A. C. Gossard, J. H. English, “Multiple Quantum Well Reflection Modulator,” Appl. Phys. Lett. 50, 1119 (1987).
    [CrossRef]
  22. S. H. Lee, S. C. Esener, M. A. Title, T. J. Drabik, “Two-Dimensional Silicon/PLZT Spatial Light Modulators: Design Considerations and Technology,” Opt. Eng. 25, 250 (1986).
    [CrossRef]
  23. D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
    [CrossRef]

1987 (9)

S. Sakai, H. Shiraishi, M. Umeno, “AlGaAs/GaAs Stripe Laser Diodes Fabricated on Si Substrates by MOCVD,” IEEE J. Quantum Electron. QE-23, 1080 (1987).
[CrossRef]

S. Sakai, X. W. Hu, M. Umeno, “AlGaAs/GaAs Transverse Junction Stripe Lasers Fabricated on Si Substrates Using Superlattice Intermediate Layers by MOCVD,” IEEE J. Quantum Electron. QE-23, 1085 (1987).
[CrossRef]

T. Shibutani et al., “A Novel High-Power Laser Structure with Current-Blocked Regions Near Cavity Facets,” IEEE J. Quantum Electron. QE-23, 760 (1987).
[CrossRef]

P. L. Derry, A. Yariv, “Ultralow-Threshold Graded-Index Separate-Confinement Single Quantum Well Buried Heterostructure (Al,Ga)As Lasers with High Reflectivity Coatings,” Appl. Phys. Lett. 50, 1773 (1987).
[CrossRef]

E. Bradley, P. K. L. Yu, “Proposed Modulator for Global VLSI Optical Interconnect Network,” Jpn. J. Appl. Phys. 26, L971 (1987).
[CrossRef]

G. D. Boyd, D. A. B. Miller, D. S. Chemla, S. L. McCall, A. C. Gossard, J. H. English, “Multiple Quantum Well Reflection Modulator,” Appl. Phys. Lett. 50, 1119 (1987).
[CrossRef]

D. S. Gardner, J. D. Meindl, K. C. Saraswat, “Interconnection and Electromigration Scaling Theory,” IEEE Trans. Electron Devices ED-34, 633 (1987).
[CrossRef]

W. H. Wu et al., “Implementation of Optical Interconnections for VLSI,” IEEE Trans Electron Devices ED-34, 706 (1987).
[CrossRef]

R. Barakat, J. Reif, “Lower Bounds on the Computational Efficiency of Optical Computing Systems,” Appl. Opt. 26, 1015 (1987).
[CrossRef] [PubMed]

1986 (3)

L. A. Bergman et al., “Holographic Optical Interconnects in VLSI,” Opt. Eng. 25, 1109 (1986).
[CrossRef]

S. H. Lee, S. C. Esener, M. A. Title, T. J. Drabik, “Two-Dimensional Silicon/PLZT Spatial Light Modulators: Design Considerations and Technology,” Opt. Eng. 25, 250 (1986).
[CrossRef]

P. R. Haugen, S. Rychnovsky, A. Husain, L. D. Hutcheson, “Optical Interconnects for High Speed Computing,” Opt. Eng. 25, 1076 (1986).
[CrossRef]

1985 (3)

R. E. Brooks, “Micromechanical Light Modulators on Silicon,” Opt. Eng. 24, 101 (1985).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical Imaging Applied to Microelectric Chip-to-Chip Interconnections,” Appl. Opt. 24, 2851 (1985).
[CrossRef] [PubMed]

1984 (1)

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

1982 (1)

K. C. Saraswat, F. Mohammadi, “Effect of Scaling of Interconnections on the time delay of VLSI Circuits,” IEEE Trans. Electron Devices ED-29, 645 (1982).
[CrossRef]

Athale, R. A.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

Barakat, R.

Bergman, L. A.

L. A. Bergman et al., “Holographic Optical Interconnects in VLSI,” Opt. Eng. 25, 1109 (1986).
[CrossRef]

Boyd, G. D.

G. D. Boyd, D. A. B. Miller, D. S. Chemla, S. L. McCall, A. C. Gossard, J. H. English, “Multiple Quantum Well Reflection Modulator,” Appl. Phys. Lett. 50, 1119 (1987).
[CrossRef]

Bradley, E.

E. Bradley, P. K. L. Yu, “Proposed Modulator for Global VLSI Optical Interconnect Network,” Jpn. J. Appl. Phys. 26, L971 (1987).
[CrossRef]

Brooks, R. E.

R. E. Brooks, “Micromechanical Light Modulators on Silicon,” Opt. Eng. 24, 101 (1985).
[CrossRef]

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Chemla, D. S.

G. D. Boyd, D. A. B. Miller, D. S. Chemla, S. L. McCall, A. C. Gossard, J. H. English, “Multiple Quantum Well Reflection Modulator,” Appl. Phys. Lett. 50, 1119 (1987).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Conway, L.

C. Mead, L. Conway, Introduction to VLSI Systems, (Addison-Wesley, Menlo Park, CA1980), pp. 11–12.

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Derry, P. L.

P. L. Derry, A. Yariv, “Ultralow-Threshold Graded-Index Separate-Confinement Single Quantum Well Buried Heterostructure (Al,Ga)As Lasers with High Reflectivity Coatings,” Appl. Phys. Lett. 50, 1773 (1987).
[CrossRef]

Dobberpuhl, D. W.

L. A. Glasser, D. W. Dobberpuhl, The Design and Analysis of VLSI Circuits, (Addison-Wesley, Menlo Park, CA, 1985), pp. 139–141.

Drabik, T. J.

S. H. Lee, S. C. Esener, M. A. Title, T. J. Drabik, “Two-Dimensional Silicon/PLZT Spatial Light Modulators: Design Considerations and Technology,” Opt. Eng. 25, 250 (1986).
[CrossRef]

English, J. H.

G. D. Boyd, D. A. B. Miller, D. S. Chemla, S. L. McCall, A. C. Gossard, J. H. English, “Multiple Quantum Well Reflection Modulator,” Appl. Phys. Lett. 50, 1119 (1987).
[CrossRef]

Esener, S. C.

S. H. Lee, S. C. Esener, M. A. Title, T. J. Drabik, “Two-Dimensional Silicon/PLZT Spatial Light Modulators: Design Considerations and Technology,” Opt. Eng. 25, 250 (1986).
[CrossRef]

Gardner, D. S.

D. S. Gardner, J. D. Meindl, K. C. Saraswat, “Interconnection and Electromigration Scaling Theory,” IEEE Trans. Electron Devices ED-34, 633 (1987).
[CrossRef]

Glasser, L. A.

L. A. Glasser, D. W. Dobberpuhl, The Design and Analysis of VLSI Circuits, (Addison-Wesley, Menlo Park, CA, 1985), pp. 139–141.

Goodman, J. W.

R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical Imaging Applied to Microelectric Chip-to-Chip Interconnections,” Appl. Opt. 24, 2851 (1985).
[CrossRef] [PubMed]

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

Gossard, A. C.

G. D. Boyd, D. A. B. Miller, D. S. Chemla, S. L. McCall, A. C. Gossard, J. H. English, “Multiple Quantum Well Reflection Modulator,” Appl. Phys. Lett. 50, 1119 (1987).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Haugen, P. R.

P. R. Haugen, S. Rychnovsky, A. Husain, L. D. Hutcheson, “Optical Interconnects for High Speed Computing,” Opt. Eng. 25, 1076 (1986).
[CrossRef]

Hesselink, L.

Hu, X. W.

S. Sakai, X. W. Hu, M. Umeno, “AlGaAs/GaAs Transverse Junction Stripe Lasers Fabricated on Si Substrates Using Superlattice Intermediate Layers by MOCVD,” IEEE J. Quantum Electron. QE-23, 1085 (1987).
[CrossRef]

Husain, A.

P. R. Haugen, S. Rychnovsky, A. Husain, L. D. Hutcheson, “Optical Interconnects for High Speed Computing,” Opt. Eng. 25, 1076 (1986).
[CrossRef]

Hutcheson, L. D.

P. R. Haugen, S. Rychnovsky, A. Husain, L. D. Hutcheson, “Optical Interconnects for High Speed Computing,” Opt. Eng. 25, 1076 (1986).
[CrossRef]

Kostuk, R. K.

Kung, S. Y.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

Lee, S. H.

S. H. Lee, S. C. Esener, M. A. Title, T. J. Drabik, “Two-Dimensional Silicon/PLZT Spatial Light Modulators: Design Considerations and Technology,” Opt. Eng. 25, 250 (1986).
[CrossRef]

Leonberger, F. I.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

McCall, S. L.

G. D. Boyd, D. A. B. Miller, D. S. Chemla, S. L. McCall, A. C. Gossard, J. H. English, “Multiple Quantum Well Reflection Modulator,” Appl. Phys. Lett. 50, 1119 (1987).
[CrossRef]

Mead, C.

C. Mead, L. Conway, Introduction to VLSI Systems, (Addison-Wesley, Menlo Park, CA1980), pp. 11–12.

Meindl, J. D.

D. S. Gardner, J. D. Meindl, K. C. Saraswat, “Interconnection and Electromigration Scaling Theory,” IEEE Trans. Electron Devices ED-34, 633 (1987).
[CrossRef]

Miller, D. A. B.

G. D. Boyd, D. A. B. Miller, D. S. Chemla, S. L. McCall, A. C. Gossard, J. H. English, “Multiple Quantum Well Reflection Modulator,” Appl. Phys. Lett. 50, 1119 (1987).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Mohammadi, F.

K. C. Saraswat, F. Mohammadi, “Effect of Scaling of Interconnections on the time delay of VLSI Circuits,” IEEE Trans. Electron Devices ED-29, 645 (1982).
[CrossRef]

Newton, A. R.

T. Quarles, A. R. Newton, D. O. Pederson, A. Sangiovanni-Vincentelli, SPICE Version 3A7 User’s Guide (U. California, Berkeley, 23Sept.1986).

Pederson, D. O.

T. Quarles, A. R. Newton, D. O. Pederson, A. Sangiovanni-Vincentelli, SPICE Version 3A7 User’s Guide (U. California, Berkeley, 23Sept.1986).

Quarles, T.

T. Quarles, A. R. Newton, D. O. Pederson, A. Sangiovanni-Vincentelli, SPICE Version 3A7 User’s Guide (U. California, Berkeley, 23Sept.1986).

Reif, J.

Rychnovsky, S.

P. R. Haugen, S. Rychnovsky, A. Husain, L. D. Hutcheson, “Optical Interconnects for High Speed Computing,” Opt. Eng. 25, 1076 (1986).
[CrossRef]

Sakai, S.

S. Sakai, H. Shiraishi, M. Umeno, “AlGaAs/GaAs Stripe Laser Diodes Fabricated on Si Substrates by MOCVD,” IEEE J. Quantum Electron. QE-23, 1080 (1987).
[CrossRef]

S. Sakai, X. W. Hu, M. Umeno, “AlGaAs/GaAs Transverse Junction Stripe Lasers Fabricated on Si Substrates Using Superlattice Intermediate Layers by MOCVD,” IEEE J. Quantum Electron. QE-23, 1085 (1987).
[CrossRef]

Sangiovanni-Vincentelli, A.

T. Quarles, A. R. Newton, D. O. Pederson, A. Sangiovanni-Vincentelli, SPICE Version 3A7 User’s Guide (U. California, Berkeley, 23Sept.1986).

Saraswat, K. C.

D. S. Gardner, J. D. Meindl, K. C. Saraswat, “Interconnection and Electromigration Scaling Theory,” IEEE Trans. Electron Devices ED-34, 633 (1987).
[CrossRef]

K. C. Saraswat, F. Mohammadi, “Effect of Scaling of Interconnections on the time delay of VLSI Circuits,” IEEE Trans. Electron Devices ED-29, 645 (1982).
[CrossRef]

Shibutani, T.

T. Shibutani et al., “A Novel High-Power Laser Structure with Current-Blocked Regions Near Cavity Facets,” IEEE J. Quantum Electron. QE-23, 760 (1987).
[CrossRef]

Shiraishi, H.

S. Sakai, H. Shiraishi, M. Umeno, “AlGaAs/GaAs Stripe Laser Diodes Fabricated on Si Substrates by MOCVD,” IEEE J. Quantum Electron. QE-23, 1080 (1987).
[CrossRef]

Title, M. A.

S. H. Lee, S. C. Esener, M. A. Title, T. J. Drabik, “Two-Dimensional Silicon/PLZT Spatial Light Modulators: Design Considerations and Technology,” Opt. Eng. 25, 250 (1986).
[CrossRef]

Umeno, M.

S. Sakai, H. Shiraishi, M. Umeno, “AlGaAs/GaAs Stripe Laser Diodes Fabricated on Si Substrates by MOCVD,” IEEE J. Quantum Electron. QE-23, 1080 (1987).
[CrossRef]

S. Sakai, X. W. Hu, M. Umeno, “AlGaAs/GaAs Transverse Junction Stripe Lasers Fabricated on Si Substrates Using Superlattice Intermediate Layers by MOCVD,” IEEE J. Quantum Electron. QE-23, 1085 (1987).
[CrossRef]

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Wood, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Wu, W. H.

W. H. Wu et al., “Implementation of Optical Interconnections for VLSI,” IEEE Trans Electron Devices ED-34, 706 (1987).
[CrossRef]

Yariv, A.

P. L. Derry, A. Yariv, “Ultralow-Threshold Graded-Index Separate-Confinement Single Quantum Well Buried Heterostructure (Al,Ga)As Lasers with High Reflectivity Coatings,” Appl. Phys. Lett. 50, 1773 (1987).
[CrossRef]

Yu, P. K. L.

E. Bradley, P. K. L. Yu, “Proposed Modulator for Global VLSI Optical Interconnect Network,” Jpn. J. Appl. Phys. 26, L971 (1987).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

P. L. Derry, A. Yariv, “Ultralow-Threshold Graded-Index Separate-Confinement Single Quantum Well Buried Heterostructure (Al,Ga)As Lasers with High Reflectivity Coatings,” Appl. Phys. Lett. 50, 1773 (1987).
[CrossRef]

G. D. Boyd, D. A. B. Miller, D. S. Chemla, S. L. McCall, A. C. Gossard, J. H. English, “Multiple Quantum Well Reflection Modulator,” Appl. Phys. Lett. 50, 1119 (1987).
[CrossRef]

IEEE J. Quantum Electron. (4)

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

T. Shibutani et al., “A Novel High-Power Laser Structure with Current-Blocked Regions Near Cavity Facets,” IEEE J. Quantum Electron. QE-23, 760 (1987).
[CrossRef]

S. Sakai, H. Shiraishi, M. Umeno, “AlGaAs/GaAs Stripe Laser Diodes Fabricated on Si Substrates by MOCVD,” IEEE J. Quantum Electron. QE-23, 1080 (1987).
[CrossRef]

S. Sakai, X. W. Hu, M. Umeno, “AlGaAs/GaAs Transverse Junction Stripe Lasers Fabricated on Si Substrates Using Superlattice Intermediate Layers by MOCVD,” IEEE J. Quantum Electron. QE-23, 1085 (1987).
[CrossRef]

IEEE Trans Electron Devices (1)

W. H. Wu et al., “Implementation of Optical Interconnections for VLSI,” IEEE Trans Electron Devices ED-34, 706 (1987).
[CrossRef]

IEEE Trans. Electron Devices (2)

K. C. Saraswat, F. Mohammadi, “Effect of Scaling of Interconnections on the time delay of VLSI Circuits,” IEEE Trans. Electron Devices ED-29, 645 (1982).
[CrossRef]

D. S. Gardner, J. D. Meindl, K. C. Saraswat, “Interconnection and Electromigration Scaling Theory,” IEEE Trans. Electron Devices ED-34, 633 (1987).
[CrossRef]

Jpn. J. Appl. Phys. (1)

E. Bradley, P. K. L. Yu, “Proposed Modulator for Global VLSI Optical Interconnect Network,” Jpn. J. Appl. Phys. 26, L971 (1987).
[CrossRef]

Opt. Eng. (4)

P. R. Haugen, S. Rychnovsky, A. Husain, L. D. Hutcheson, “Optical Interconnects for High Speed Computing,” Opt. Eng. 25, 1076 (1986).
[CrossRef]

S. H. Lee, S. C. Esener, M. A. Title, T. J. Drabik, “Two-Dimensional Silicon/PLZT Spatial Light Modulators: Design Considerations and Technology,” Opt. Eng. 25, 250 (1986).
[CrossRef]

L. A. Bergman et al., “Holographic Optical Interconnects in VLSI,” Opt. Eng. 25, 1109 (1986).
[CrossRef]

R. E. Brooks, “Micromechanical Light Modulators on Silicon,” Opt. Eng. 24, 101 (1985).
[CrossRef]

Proc. IEEE (1)

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

Other (6)

Ref. 12, pp. 135–136.

Ref. 10, pp. 341–342.

C. Mead, L. Conway, Introduction to VLSI Systems, (Addison-Wesley, Menlo Park, CA1980), pp. 11–12.

T. Quarles, A. R. Newton, D. O. Pederson, A. Sangiovanni-Vincentelli, SPICE Version 3A7 User’s Guide (U. California, Berkeley, 23Sept.1986).

L. A. Glasser, D. W. Dobberpuhl, The Design and Analysis of VLSI Circuits, (Addison-Wesley, Menlo Park, CA, 1985), pp. 139–141.

“The MOSIS System (What It is and How to Use It),” Report ISI/TM-84-128, Information Sciences Institute, U. Southern California, Marina del Rey, CA 90292 (Mar.1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

System configuration for implementation of free-space optical interconnects.

Fig. 2
Fig. 2

Schematic diagram of a photodetector circuit.

Fig. 3
Fig. 3

Schematic diagram of electrical interconnection of two CMOS gates.

Fig. 4
Fig. 4

Interconnect delay time as a function of driving gate size and linewidth for constant energy loss. E = 11 pJ, L = 1.5 mm for a polysilicon interconnect line

Fig. 5
Fig. 5

Switching energy vs rise time for a 1.0-mm aluminum line and for a 9.0% efficient optical interconnect with a 1-mW laser diode threshold power.

Fig. 6
Fig. 6

Switching energy vs rise time for aluminum lines of four different lengths and for a 9.0% efficient optical interconnect with a 1-mW laser diode threshold power.

Fig. 7
Fig. 7

Total power dissipation per interconnect vs maximum data transmission rate for the same interconnect parameters as in Fig. 6.

Fig. 8
Fig. 8

Break-even line length vs rise time for an aluminum interconnect line (3-μm minimum feature size) and a 9.0% efficient optical system, with 1.0-mW threshold power lasers.

Fig. 9
Fig. 9

Schematic representations of fan-out for (a), (c), (e) electrical interconnects and (b), (d), (f) optical interconnects.

Fig. 10
Fig. 10

Break-even line length vs rise time for five different values of remote fan-out. The efficiency of the optical system is 9.0%, the laser threshold power is 1 mW. The minimum feature size of the IC is 3 μm. The capacitance limited region is indicated for F = 8.

Fig. 11
Fig. 11

Break-even line length vs rise time for a 9.0% efficient optical system with 1-mW threshold power lasers and an aluminum interconnect line, both for a fan-out of 8. The minimum feature size of the IC varies from 3 to 0.25 μm. The RC limited, capacitance limited, and threshold limited regions are indicated for a 1-μm IC minimum feature size.

Fig. 12
Fig. 12

Break-even line length vs rise time for varying threshold powers of the laser transmitters. Optical system efficiency is 9.0%, IC minimum feature size is 1.0 μm, and the fan-out = 8.

Fig. 13
Fig. 13

Break-even line length vs rise time for varying optical system efficiency. Minimum feature size = 1.0 μm and the fan-out = 8.

Fig. 14
Fig. 14

Optical interconnect system with modulators as optical signal transmitters.

Fig. 15
Fig. 15

Break-even line length vs rise time for implementation of optical interconnects with light modulators. Fan-out varies from 1 to 15. Optical link efficiency is 45%. Minimum feature size is 3 μm.

Tables (1)

Tables Icon

Table I Integrated Circuit Process Parameters Expressed as Functions of Circuit Minimum Feature Size, λ ˜ (in μm) for First-Level Aluminum Lines

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

E 1 = ( 2 · 2 · 0 . 5 ) ( C P D + C i n ) V 2 ,
I P = 2 q ( P L P t h ) η / ( h ν ) ,
η = η L η H η D ,
E = 2 τ P ,
E 2 = 2 V ( C P D + C i n ) h ν η q + 2 τ P t h .
E 0 = 2 V ( C P D + C i n ) [ h ν η q + V ] + 2 τ P t h .
E 0 2 V ( C P D + C i n ) h ν η q + 2 τ P t h .
C O = M C O A + C O B , M 1 ,
C L = L W C L A + L C L B ,
C T = C O + C L + C i n ,
E E = C T V 2 = ( M C O A + C O B + C i n + C L A L W + C L B L ) V 2 .
τ R L C L A L 2 + R L C L B L 2 / W + 2 C i n R L L / W + [ V / ( M I 0 ) ] ( C T ) .
M opt = E E V 2 ( C O B + C i n + C L B L ) C O A + C L A L B ,
W opt = E E / V 2 ( C O B + C i n + C L B L ) C O A / B + C L A L ,
E O E E = 2 h ν q V ( C P D + C i n ) η C T + 2 τ P t h C T V 2 .
τ 2 = h ν ( C P D + C i n ) V q η P t h ,
E O E E = 2 h ν q V ( C P D + C i n ) C T 1 η .
1 / ( 2 τ ) = maximum data transmission rate ,
data rate = total power dissipation switching energy .
L b e t h 2 τ P t h / [ V 2 ( W min C L A + C L B ) ] .
L b e ( 2 h ν q V C P D + C i n η M C O A C O B C i n ) / ( W C L A + C L B ) .
L b e C ( 2 h ν q V C P D + C i n η C O A C O B C i n ) / ( W min C L A + C L B ) .
τ > R L C L A L 2 + V C O A / I 0 ,
L b e R C < τ ( V C O A / I 0 ) R L C L A .
L b e t h 2 τ P t h / [ V 2 F ( W min C L A + C L B ) ] .
τ 2 = V ( h ν / q ) ( C P D + C i n ) F / ( P t h η ) .
P max = ( P L P t h ) η L ,
P max = V ( C P D + C i n ) h ν F / ( η H η D q τ ) ,
F < η H η D q τ P max / [ V ( C P D + C i n ) h ν ] .
L b e R C = 0 . 22 λ ˜ { τ ( 8 ps / μ m 5 / 2 ) λ ˜ 5 / 2 } 1 / 2 ( ρ ε o x ) 1 / 2 0 . 22 λ ˜ [ τ / ( ρ ε o x ) ] 1 / 2 ( for λ ˜ 5 / 2 τ / 8 ps , λ ˜ in μ m ) .
L b e C h ν q 1 V 1 η C P D W min C L A + C L B .
( L b e C ) max = h ν k T 1 η C P D W min C L A + C L B .
E 2 = 4 V ( C P D + C i n ) h ν / ( η q ) .
E 0 = 2 V F ( C P D + C i n ) [ 2 h ν / ( η q ) + V ] + C M V m 2

Metrics