Abstract

Sorting is central to the solution of many knowledge-based and switching problems in advanced computation and communication systems. Parallel-pipelined sorting algorithms are appropriate for applications that demand high throughput, low delay, and many data channels. One such algorithm, the bitonic sort, can be implemented with passive perfect shuffle interconnects between active stages of compare-and-exchange (C&E) elements. In this paper we focus on optical hardware to implement the C&E operation and show that, by taking advantage of a distinctive feature of optical logic, namely, bistability, comparison circuits of remarkable simplicity are attainable. We describe implementations of C&E in a variety of optical device technologies capable of performing latching and nonlatching logic. Based on the device characteristics we outline potential application areas for each technology.

© 1988 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription