Abstract

Symbolic substitution is being considered for use in several optical processing systems. Two fundamentally different architectures that implement symbolic substitution will be studied. A typical application (N-bit binary addition) is chosen as a benchmark for system level performance, and the strengths and weaknesses of several implementations of these two architectures are identified and compared.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Huang, “Parallel Algorithms for Optical Digital Computers,” in Proceedings, Tenth International Optical Computing Conference (IEEE Computer Society, Los Angeles, 1983), pp. 13–17.
    [CrossRef]
  2. K.-H. Brenner, A. Huang, N. Streibl, “Digital Optical Computing with Symbolic Substitution,” Appl. Opt. 25, 3054 (1986).
    [CrossRef] [PubMed]
  3. M. J. Murdocca, “Digital Optical Computing with One-Rule Cellular Automata,” Appl. Opt. 26, 682 (1987).
    [CrossRef] [PubMed]
  4. A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “The Symmetric Self-Electrooptic Effect Device,” in Postdeadline Papers, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987).
  5. D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
    [CrossRef]
  6. T. J. Cloonan, “Strengths and Weaknesses of Optical Architectures Based on Symbolic Substitution,” in Technical Digest of Topical Meetings on Optical Computing (Optical Society of America, Washington, DC, 1987), pp. 16–19.

1987 (1)

1986 (1)

1985 (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Brenner, K.-H.

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Chirovsky, L. M. F.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “The Symmetric Self-Electrooptic Effect Device,” in Postdeadline Papers, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987).

Cloonan, T. J.

T. J. Cloonan, “Strengths and Weaknesses of Optical Architectures Based on Symbolic Substitution,” in Technical Digest of Topical Meetings on Optical Computing (Optical Society of America, Washington, DC, 1987), pp. 16–19.

Cunningham, J. E.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “The Symmetric Self-Electrooptic Effect Device,” in Postdeadline Papers, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987).

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Henry, J. E.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “The Symmetric Self-Electrooptic Effect Device,” in Postdeadline Papers, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987).

Hinton, H. S.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “The Symmetric Self-Electrooptic Effect Device,” in Postdeadline Papers, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987).

Huang, A.

K.-H. Brenner, A. Huang, N. Streibl, “Digital Optical Computing with Symbolic Substitution,” Appl. Opt. 25, 3054 (1986).
[CrossRef] [PubMed]

A. Huang, “Parallel Algorithms for Optical Digital Computers,” in Proceedings, Tenth International Optical Computing Conference (IEEE Computer Society, Los Angeles, 1983), pp. 13–17.
[CrossRef]

Lentine, A. L.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “The Symmetric Self-Electrooptic Effect Device,” in Postdeadline Papers, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987).

Miller, D. A. B.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “The Symmetric Self-Electrooptic Effect Device,” in Postdeadline Papers, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987).

Murdocca, M. J.

Streibl, N.

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Wood, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Other (3)

T. J. Cloonan, “Strengths and Weaknesses of Optical Architectures Based on Symbolic Substitution,” in Technical Digest of Topical Meetings on Optical Computing (Optical Society of America, Washington, DC, 1987), pp. 16–19.

A. Huang, “Parallel Algorithms for Optical Digital Computers,” in Proceedings, Tenth International Optical Computing Conference (IEEE Computer Society, Los Angeles, 1983), pp. 13–17.
[CrossRef]

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “The Symmetric Self-Electrooptic Effect Device,” in Postdeadline Papers, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Typical LHS-to-RHS rule.

Fig. 2
Fig. 2

Four LHS-to-RHS rules for execution of binary addition via symbolic substitution: (a) rule 1, (b) rule 2, (c) rule 3, and (d) rule 4.

Fig. 3
Fig. 3

S-SEED device.

Fig. 4
Fig. 4

Crossed data transfer.

Fig. 5
Fig. 5

Uncrossed data transfer.

Fig. 6
Fig. 6

Recognition of Q1 = 0: if Q2 is initially 1, then Q2 remains 1 only if Q1 = 0.

Fig. 7
Fig. 7

Recognition of Q1 = 1: if Q2 is initially 1, then Q2 remains 1 only if Q1 = 1.

Fig. 8
Fig. 8

Scribing of Q3 = 1: Q3 is set to 1 only if Q2 = 1.

Fig. 9
Fig. 9

Scribing of Q3 = 0: Q3 is reset to 0 only if Q2 = 1.

Fig. 10
Fig. 10

Time-sequential implementation.

Fig. 11
Fig. 11

Multirule parallel implementation.

Fig. 12
Fig. 12

Processing block for the LHS-to-RHS rule in Fig. 2(c).

Fig. 13
Fig. 13

One-rule parallel implementation.

Fig. 14
Fig. 14

Instructions sequence for the LHS-to-RHS rule in Fig. 2(c).

Fig. 15
Fig. 15

Half-adder circuit.

Fig. 16
Fig. 16

Half-adder arrangement for addition of 2-bit numbers.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T time-seq = ( N + 1 ) ( 24 T s + 24 T m + 20 T p ) ,
T multirule = ( N + 1 ) ( T s + T m + T n T p ) ,
T one-rule = ( 111 ) ( N + 1 ) ( T s + T m + T n + T p ) .

Metrics