Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. W. Chantry, J. W. Fleming, P. M. Smith, M. Cudby, H. A. Willis, “For Infrared and Millimeter-Wave Absorbtion Spectra of Some Low-Loss Polymers,” Chem. Phys. Lett. 10, 473 (1971).
    [CrossRef]
  2. S. Ayers, G. J. Davies, H. J. Haig, D. Marr, A. E. Parker, “Low-Loss Dielectrics for 10–3000 GHz,” Proc. IEEE 121, 1447 (1974).
  3. J. R. Birch, J. D. Dromey, “The Optical Constants of Common Low-Loss Polymers Between 4–40 cm−1,” Infrared Phys. 121, 225 (1981).
    [CrossRef]
  4. D. T. Rampton, R. W. Grow, “Economic Infrared Polarizer Utilizing Interference Effects in Films of Polyethylene Kitchen Wrap,” Appl. Opt. 15, 1034 (1976).
    [CrossRef] [PubMed]
  5. M. C. Richardson, A. J. Alcock, K. Leopold, P. Burtyn, “Large Aperture CO2 Laser Discharges,” J. Quantum Electron. QE-9, 736 (1973).
  6. D. A. Pinnow, T. C. Rich, “Measurements of the Absorption Coefficient in Fiber Optical Waveguides using a Calorimetric Technique,” Appl. Opt. 12, 984 (1973).
    [CrossRef] [PubMed]
  7. F. D. Rossini, D. D. Wagman, W. H. Evans, S. Levine, I. Jaffe, “Selected Values of Chemical-Thermodynamic Properties of Materials,” Natl. Bur. Stand. U.S. Publ. 500, 120 (1952).
  8. B. S. Patel, “Optical Suitability of Window Materials for CO2 Laser,” Appl. Opt. 16, 1232 (1977).
    [CrossRef] [PubMed]
  9. A. K. Nath, U. K. Chatterjee, D. D. Bhawalkar, “Multiline TEA CO2 Laser,” Ind. J. Phys. 54B, 112 (1980).
  10. K. M. Leung, M. Bass, A. G. J. Balbin-Velaverde, Laser Induced Damage in Optical Materials,” Natl. Bur. Stand. U.S. Pub. 435, 107 (1975).
  11. V. Wang, C. R. Giuliano, S. D. Allen, R. C. Pastor, “Laser-Induced Damage in Optical Materials,” Natl. Bur. Stand. U.S. Publ. 435, 118 (1975).

1981 (1)

J. R. Birch, J. D. Dromey, “The Optical Constants of Common Low-Loss Polymers Between 4–40 cm−1,” Infrared Phys. 121, 225 (1981).
[CrossRef]

1980 (1)

A. K. Nath, U. K. Chatterjee, D. D. Bhawalkar, “Multiline TEA CO2 Laser,” Ind. J. Phys. 54B, 112 (1980).

1977 (1)

1976 (1)

1975 (2)

K. M. Leung, M. Bass, A. G. J. Balbin-Velaverde, Laser Induced Damage in Optical Materials,” Natl. Bur. Stand. U.S. Pub. 435, 107 (1975).

V. Wang, C. R. Giuliano, S. D. Allen, R. C. Pastor, “Laser-Induced Damage in Optical Materials,” Natl. Bur. Stand. U.S. Publ. 435, 118 (1975).

1974 (1)

S. Ayers, G. J. Davies, H. J. Haig, D. Marr, A. E. Parker, “Low-Loss Dielectrics for 10–3000 GHz,” Proc. IEEE 121, 1447 (1974).

1973 (2)

M. C. Richardson, A. J. Alcock, K. Leopold, P. Burtyn, “Large Aperture CO2 Laser Discharges,” J. Quantum Electron. QE-9, 736 (1973).

D. A. Pinnow, T. C. Rich, “Measurements of the Absorption Coefficient in Fiber Optical Waveguides using a Calorimetric Technique,” Appl. Opt. 12, 984 (1973).
[CrossRef] [PubMed]

1971 (1)

G. W. Chantry, J. W. Fleming, P. M. Smith, M. Cudby, H. A. Willis, “For Infrared and Millimeter-Wave Absorbtion Spectra of Some Low-Loss Polymers,” Chem. Phys. Lett. 10, 473 (1971).
[CrossRef]

1952 (1)

F. D. Rossini, D. D. Wagman, W. H. Evans, S. Levine, I. Jaffe, “Selected Values of Chemical-Thermodynamic Properties of Materials,” Natl. Bur. Stand. U.S. Publ. 500, 120 (1952).

Alcock, A. J.

M. C. Richardson, A. J. Alcock, K. Leopold, P. Burtyn, “Large Aperture CO2 Laser Discharges,” J. Quantum Electron. QE-9, 736 (1973).

Allen, S. D.

V. Wang, C. R. Giuliano, S. D. Allen, R. C. Pastor, “Laser-Induced Damage in Optical Materials,” Natl. Bur. Stand. U.S. Publ. 435, 118 (1975).

Ayers, S.

S. Ayers, G. J. Davies, H. J. Haig, D. Marr, A. E. Parker, “Low-Loss Dielectrics for 10–3000 GHz,” Proc. IEEE 121, 1447 (1974).

Balbin-Velaverde, A. G. J.

K. M. Leung, M. Bass, A. G. J. Balbin-Velaverde, Laser Induced Damage in Optical Materials,” Natl. Bur. Stand. U.S. Pub. 435, 107 (1975).

Bass, M.

K. M. Leung, M. Bass, A. G. J. Balbin-Velaverde, Laser Induced Damage in Optical Materials,” Natl. Bur. Stand. U.S. Pub. 435, 107 (1975).

Bhawalkar, D. D.

A. K. Nath, U. K. Chatterjee, D. D. Bhawalkar, “Multiline TEA CO2 Laser,” Ind. J. Phys. 54B, 112 (1980).

Birch, J. R.

J. R. Birch, J. D. Dromey, “The Optical Constants of Common Low-Loss Polymers Between 4–40 cm−1,” Infrared Phys. 121, 225 (1981).
[CrossRef]

Burtyn, P.

M. C. Richardson, A. J. Alcock, K. Leopold, P. Burtyn, “Large Aperture CO2 Laser Discharges,” J. Quantum Electron. QE-9, 736 (1973).

Chantry, G. W.

G. W. Chantry, J. W. Fleming, P. M. Smith, M. Cudby, H. A. Willis, “For Infrared and Millimeter-Wave Absorbtion Spectra of Some Low-Loss Polymers,” Chem. Phys. Lett. 10, 473 (1971).
[CrossRef]

Chatterjee, U. K.

A. K. Nath, U. K. Chatterjee, D. D. Bhawalkar, “Multiline TEA CO2 Laser,” Ind. J. Phys. 54B, 112 (1980).

Cudby, M.

G. W. Chantry, J. W. Fleming, P. M. Smith, M. Cudby, H. A. Willis, “For Infrared and Millimeter-Wave Absorbtion Spectra of Some Low-Loss Polymers,” Chem. Phys. Lett. 10, 473 (1971).
[CrossRef]

Davies, G. J.

S. Ayers, G. J. Davies, H. J. Haig, D. Marr, A. E. Parker, “Low-Loss Dielectrics for 10–3000 GHz,” Proc. IEEE 121, 1447 (1974).

Dromey, J. D.

J. R. Birch, J. D. Dromey, “The Optical Constants of Common Low-Loss Polymers Between 4–40 cm−1,” Infrared Phys. 121, 225 (1981).
[CrossRef]

Evans, W. H.

F. D. Rossini, D. D. Wagman, W. H. Evans, S. Levine, I. Jaffe, “Selected Values of Chemical-Thermodynamic Properties of Materials,” Natl. Bur. Stand. U.S. Publ. 500, 120 (1952).

Fleming, J. W.

G. W. Chantry, J. W. Fleming, P. M. Smith, M. Cudby, H. A. Willis, “For Infrared and Millimeter-Wave Absorbtion Spectra of Some Low-Loss Polymers,” Chem. Phys. Lett. 10, 473 (1971).
[CrossRef]

Giuliano, C. R.

V. Wang, C. R. Giuliano, S. D. Allen, R. C. Pastor, “Laser-Induced Damage in Optical Materials,” Natl. Bur. Stand. U.S. Publ. 435, 118 (1975).

Grow, R. W.

Haig, H. J.

S. Ayers, G. J. Davies, H. J. Haig, D. Marr, A. E. Parker, “Low-Loss Dielectrics for 10–3000 GHz,” Proc. IEEE 121, 1447 (1974).

Jaffe, I.

F. D. Rossini, D. D. Wagman, W. H. Evans, S. Levine, I. Jaffe, “Selected Values of Chemical-Thermodynamic Properties of Materials,” Natl. Bur. Stand. U.S. Publ. 500, 120 (1952).

Leopold, K.

M. C. Richardson, A. J. Alcock, K. Leopold, P. Burtyn, “Large Aperture CO2 Laser Discharges,” J. Quantum Electron. QE-9, 736 (1973).

Leung, K. M.

K. M. Leung, M. Bass, A. G. J. Balbin-Velaverde, Laser Induced Damage in Optical Materials,” Natl. Bur. Stand. U.S. Pub. 435, 107 (1975).

Levine, S.

F. D. Rossini, D. D. Wagman, W. H. Evans, S. Levine, I. Jaffe, “Selected Values of Chemical-Thermodynamic Properties of Materials,” Natl. Bur. Stand. U.S. Publ. 500, 120 (1952).

Marr, D.

S. Ayers, G. J. Davies, H. J. Haig, D. Marr, A. E. Parker, “Low-Loss Dielectrics for 10–3000 GHz,” Proc. IEEE 121, 1447 (1974).

Nath, A. K.

A. K. Nath, U. K. Chatterjee, D. D. Bhawalkar, “Multiline TEA CO2 Laser,” Ind. J. Phys. 54B, 112 (1980).

Parker, A. E.

S. Ayers, G. J. Davies, H. J. Haig, D. Marr, A. E. Parker, “Low-Loss Dielectrics for 10–3000 GHz,” Proc. IEEE 121, 1447 (1974).

Pastor, R. C.

V. Wang, C. R. Giuliano, S. D. Allen, R. C. Pastor, “Laser-Induced Damage in Optical Materials,” Natl. Bur. Stand. U.S. Publ. 435, 118 (1975).

Patel, B. S.

Pinnow, D. A.

Rampton, D. T.

Rich, T. C.

Richardson, M. C.

M. C. Richardson, A. J. Alcock, K. Leopold, P. Burtyn, “Large Aperture CO2 Laser Discharges,” J. Quantum Electron. QE-9, 736 (1973).

Rossini, F. D.

F. D. Rossini, D. D. Wagman, W. H. Evans, S. Levine, I. Jaffe, “Selected Values of Chemical-Thermodynamic Properties of Materials,” Natl. Bur. Stand. U.S. Publ. 500, 120 (1952).

Smith, P. M.

G. W. Chantry, J. W. Fleming, P. M. Smith, M. Cudby, H. A. Willis, “For Infrared and Millimeter-Wave Absorbtion Spectra of Some Low-Loss Polymers,” Chem. Phys. Lett. 10, 473 (1971).
[CrossRef]

Wagman, D. D.

F. D. Rossini, D. D. Wagman, W. H. Evans, S. Levine, I. Jaffe, “Selected Values of Chemical-Thermodynamic Properties of Materials,” Natl. Bur. Stand. U.S. Publ. 500, 120 (1952).

Wang, V.

V. Wang, C. R. Giuliano, S. D. Allen, R. C. Pastor, “Laser-Induced Damage in Optical Materials,” Natl. Bur. Stand. U.S. Publ. 435, 118 (1975).

Willis, H. A.

G. W. Chantry, J. W. Fleming, P. M. Smith, M. Cudby, H. A. Willis, “For Infrared and Millimeter-Wave Absorbtion Spectra of Some Low-Loss Polymers,” Chem. Phys. Lett. 10, 473 (1971).
[CrossRef]

Appl. Opt. (3)

Chem. Phys. Lett. (1)

G. W. Chantry, J. W. Fleming, P. M. Smith, M. Cudby, H. A. Willis, “For Infrared and Millimeter-Wave Absorbtion Spectra of Some Low-Loss Polymers,” Chem. Phys. Lett. 10, 473 (1971).
[CrossRef]

Ind. J. Phys. (1)

A. K. Nath, U. K. Chatterjee, D. D. Bhawalkar, “Multiline TEA CO2 Laser,” Ind. J. Phys. 54B, 112 (1980).

Infrared Phys. (1)

J. R. Birch, J. D. Dromey, “The Optical Constants of Common Low-Loss Polymers Between 4–40 cm−1,” Infrared Phys. 121, 225 (1981).
[CrossRef]

J. Quantum Electron. (1)

M. C. Richardson, A. J. Alcock, K. Leopold, P. Burtyn, “Large Aperture CO2 Laser Discharges,” J. Quantum Electron. QE-9, 736 (1973).

Natl. Bur. Stand. U.S. Pub. (1)

K. M. Leung, M. Bass, A. G. J. Balbin-Velaverde, Laser Induced Damage in Optical Materials,” Natl. Bur. Stand. U.S. Pub. 435, 107 (1975).

Natl. Bur. Stand. U.S. Publ. (2)

V. Wang, C. R. Giuliano, S. D. Allen, R. C. Pastor, “Laser-Induced Damage in Optical Materials,” Natl. Bur. Stand. U.S. Publ. 435, 118 (1975).

F. D. Rossini, D. D. Wagman, W. H. Evans, S. Levine, I. Jaffe, “Selected Values of Chemical-Thermodynamic Properties of Materials,” Natl. Bur. Stand. U.S. Publ. 500, 120 (1952).

Proc. IEEE (1)

S. Ayers, G. J. Davies, H. J. Haig, D. Marr, A. E. Parker, “Low-Loss Dielectrics for 10–3000 GHz,” Proc. IEEE 121, 1447 (1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental arrangement for simultaneous measurement of incident, transmitted, and reflected energy.

Fig. 2
Fig. 2

Comparison of output beam profile for full aperture of the UV preionized laser with KCl and polyethylene windows.

Fig. 3
Fig. 3

Output beam profile for a TEM00 laser with and without an intracavity polyethylene window.

Tables (1)

Tables Icon

Table I Variation of the Absorbtion (A), Transducer Temperature (ΔT1), Transducer and Polyethylene Temperature (ΔT2) as a Function of cw Laser Power

Metrics