Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. S. Szabo, R. I. Tanaka, Residue Arithmetic and Its Applications to Computer Technology (McGraw-Hill, New York, 1967).
  2. C. D. Capps, R. A. Falk, T. L. Houk, “Optical Arithmetic/Logic Unit Based on Residue Arithmetic and Symbolic Substitution,” Appl. Opt. 27, 1682 (1988).
    [CrossRef] [PubMed]
  3. F. A. Horrigan, W. W. Stoner, “Residue-Based Optical Processor,” Proc. Soc. Photo-Opt. Instrum. Eng. 185, 19 (1979).
  4. P. R. Beaudet, A. P. Goutzoulis, E. C. Malarkey, J. C. Bradley, “Residue Arithmetic Techniques for Optical Processing of Adaptive Phased Array Radars,” Appl. Opt. 25, 3097 (1986).
    [CrossRef] [PubMed]

1988 (1)

1986 (1)

1979 (1)

F. A. Horrigan, W. W. Stoner, “Residue-Based Optical Processor,” Proc. Soc. Photo-Opt. Instrum. Eng. 185, 19 (1979).

Beaudet, P. R.

Bradley, J. C.

Capps, C. D.

Falk, R. A.

Goutzoulis, A. P.

Horrigan, F. A.

F. A. Horrigan, W. W. Stoner, “Residue-Based Optical Processor,” Proc. Soc. Photo-Opt. Instrum. Eng. 185, 19 (1979).

Houk, T. L.

Malarkey, E. C.

Stoner, W. W.

F. A. Horrigan, W. W. Stoner, “Residue-Based Optical Processor,” Proc. Soc. Photo-Opt. Instrum. Eng. 185, 19 (1979).

Szabo, N. S.

N. S. Szabo, R. I. Tanaka, Residue Arithmetic and Its Applications to Computer Technology (McGraw-Hill, New York, 1967).

Tanaka, R. I.

N. S. Szabo, R. I. Tanaka, Residue Arithmetic and Its Applications to Computer Technology (McGraw-Hill, New York, 1967).

Appl. Opt. (2)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

F. A. Horrigan, W. W. Stoner, “Residue-Based Optical Processor,” Proc. Soc. Photo-Opt. Instrum. Eng. 185, 19 (1979).

Other (1)

N. S. Szabo, R. I. Tanaka, Residue Arithmetic and Its Applications to Computer Technology (McGraw-Hill, New York, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Modulo 3 addition lookup table concept.

Fig. 2
Fig. 2

Fiber implementation of modulo 3 adder.

Fig. 3
Fig. 3

Tracing of typical oscilloscope output from fiber-optic device. Groups of operations are at 20-ns intervals.

Fig. 4
Fig. 4

Possible integrated optic configuration of crossbar architecture.

Metrics