Abstract

The grazing incidence reflectance of silicon carbide films produced by plasma-assisted chemical vapor deposition has been evaluated in the spectral region from 256 to 1216 Å. The results show that reflectivities higher than conventional coatings can be obtained on coatings deposited both on silicon wafers and quartz substrates. Potential application of silicon carbide films for EUV astronomical instruments will be discussed.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Rehn, V. O. Jones, “Vacuum Ultraviolet (VUV) and Soft X-Ray Mirrors for Synchrotron Radiation,” Opt. Eng. 17, 504 (1978).
    [CrossRef]
  2. W. D. Partlow, H. Herzig, “Influence of Plasma Excitation Frequency on the Properties of a-SiC:H Produced in a Glow Discharge Plasma,” in Proceedings, MRS Conference, Symposium F on Materials Issues in Applications of Amorphous Silicon Technology, San Francisco (1985).
  3. W. D. Partlow, “Develop Techniques for Applying Silicon Carbide Coatings,” Final Report, NASA Contract NAS5-27679 (1984).
  4. W. D. Partlow, “Plasma CVD: New Ways to Control Thin Film Deposition Processes,” Proc. Soc. Photo-Opt. Instrum Eng. 678, 24 (1986).
  5. W. D. Partlow, L. E. Kline, “Homogeneous and Heterogeneous Chemistry of Methane Deposition Plasmas,” in Proceedings, MRS Spring Conference, Symposium C on Plasma Processing, Palo Alto (1986).
  6. J. F. Osantowski, “Reflectance and Optical Constants for Cer-Vit from 250 to 1050 Å,” J. Opt. Soc. Am. 64, 834 (1974).
    [CrossRef]
  7. J. F. Osantowski, A. R. Toft, NASA Goddard Space Flight Center; unpublished data.
  8. J. C. Rife, J. F. Osantowski, “Optical Constants in the Extreme Ultraviolet and Soft X-Ray Region,” Proc. Soc. Photo-Opt. Instrum. Eng. 315, 103 (1981).
  9. S. Mrowka, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160 (1985).
  10. J. C. Rife, J. Osantowski, “Extreme Ultraviolet Optical Properties of Two SiO2 Based Low-Expansion Materials,” J. Opt. Soc. Am. 70, 1513 (1980).
    [CrossRef]
  11. L. R. Canfield, G. Hass, W. R. Hunter, “The Optical Properties of Evaporated Gold in the Vacuum Ultraviolet from 300 Å to 2000 Å,” J. Phys. 25, 124 (1964).
    [CrossRef]
  12. G. Hass, G. F. Jacobus, W. R. Hunter, “Optical Properties of Evaporated Iridium in the Vacuum Ultraviolet from 500 Å to 2000 Å,” J. Opt. Soc. Am. 57, 758 (1967).
    [CrossRef]
  13. J. F. Osantowski, NASA Goddard Space Flight Center; unpublished data.
  14. W. R. Hunter, D. W. Angel, G. Hass, “Optical Properties of Evaporated Platinum Films in the Vacuum Ultraviolet from 2200 Å to 150 Å,” J. Opt. Soc. Am. 69, 1695 (1979).
    [CrossRef]
  15. J. F. Osantowski, P. M. Davila, T. T. Saha, “Telescope Technology for the Far Ultraviolet Spectroscopic Explorer (FUSE),” Opt. Eng. 25, 1039 (1986).
    [CrossRef]
  16. T. T. Saha, D. A. Thomas, J. F. Osantowski, “OSAC Analysis of the Far Ultraviolet Spectroscopic Explorer (FUSE) Telescope,” Proc. Soc. Photo-Opt. Instrum. Eng. 640, 79 (1986).
  17. W. J. Choyke, E. D. Palik, “Silicon Carbide (SiC),” in Handbook of Optical Constants of Solids, E. D. Palik, Ed. (Academic, New York, 1985).

1986 (3)

W. D. Partlow, “Plasma CVD: New Ways to Control Thin Film Deposition Processes,” Proc. Soc. Photo-Opt. Instrum Eng. 678, 24 (1986).

J. F. Osantowski, P. M. Davila, T. T. Saha, “Telescope Technology for the Far Ultraviolet Spectroscopic Explorer (FUSE),” Opt. Eng. 25, 1039 (1986).
[CrossRef]

T. T. Saha, D. A. Thomas, J. F. Osantowski, “OSAC Analysis of the Far Ultraviolet Spectroscopic Explorer (FUSE) Telescope,” Proc. Soc. Photo-Opt. Instrum. Eng. 640, 79 (1986).

1985 (1)

S. Mrowka, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160 (1985).

1981 (1)

J. C. Rife, J. F. Osantowski, “Optical Constants in the Extreme Ultraviolet and Soft X-Ray Region,” Proc. Soc. Photo-Opt. Instrum. Eng. 315, 103 (1981).

1980 (1)

1979 (1)

1978 (1)

V. Rehn, V. O. Jones, “Vacuum Ultraviolet (VUV) and Soft X-Ray Mirrors for Synchrotron Radiation,” Opt. Eng. 17, 504 (1978).
[CrossRef]

1974 (1)

1967 (1)

1964 (1)

L. R. Canfield, G. Hass, W. R. Hunter, “The Optical Properties of Evaporated Gold in the Vacuum Ultraviolet from 300 Å to 2000 Å,” J. Phys. 25, 124 (1964).
[CrossRef]

Angel, D. W.

Bowyer, S.

S. Mrowka, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160 (1985).

Canfield, L. R.

L. R. Canfield, G. Hass, W. R. Hunter, “The Optical Properties of Evaporated Gold in the Vacuum Ultraviolet from 300 Å to 2000 Å,” J. Phys. 25, 124 (1964).
[CrossRef]

Choyke, W. J.

S. Mrowka, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160 (1985).

W. J. Choyke, E. D. Palik, “Silicon Carbide (SiC),” in Handbook of Optical Constants of Solids, E. D. Palik, Ed. (Academic, New York, 1985).

Davila, P. M.

J. F. Osantowski, P. M. Davila, T. T. Saha, “Telescope Technology for the Far Ultraviolet Spectroscopic Explorer (FUSE),” Opt. Eng. 25, 1039 (1986).
[CrossRef]

Hass, G.

Herzig, H.

W. D. Partlow, H. Herzig, “Influence of Plasma Excitation Frequency on the Properties of a-SiC:H Produced in a Glow Discharge Plasma,” in Proceedings, MRS Conference, Symposium F on Materials Issues in Applications of Amorphous Silicon Technology, San Francisco (1985).

Hunter, W. R.

Jacobus, G. F.

Jelinsky, P.

S. Mrowka, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160 (1985).

Jones, V. O.

V. Rehn, V. O. Jones, “Vacuum Ultraviolet (VUV) and Soft X-Ray Mirrors for Synchrotron Radiation,” Opt. Eng. 17, 504 (1978).
[CrossRef]

Kline, L. E.

W. D. Partlow, L. E. Kline, “Homogeneous and Heterogeneous Chemistry of Methane Deposition Plasmas,” in Proceedings, MRS Spring Conference, Symposium C on Plasma Processing, Palo Alto (1986).

Mrowka, S.

S. Mrowka, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160 (1985).

Osantowski, J.

Osantowski, J. F.

J. F. Osantowski, P. M. Davila, T. T. Saha, “Telescope Technology for the Far Ultraviolet Spectroscopic Explorer (FUSE),” Opt. Eng. 25, 1039 (1986).
[CrossRef]

T. T. Saha, D. A. Thomas, J. F. Osantowski, “OSAC Analysis of the Far Ultraviolet Spectroscopic Explorer (FUSE) Telescope,” Proc. Soc. Photo-Opt. Instrum. Eng. 640, 79 (1986).

J. C. Rife, J. F. Osantowski, “Optical Constants in the Extreme Ultraviolet and Soft X-Ray Region,” Proc. Soc. Photo-Opt. Instrum. Eng. 315, 103 (1981).

J. F. Osantowski, “Reflectance and Optical Constants for Cer-Vit from 250 to 1050 Å,” J. Opt. Soc. Am. 64, 834 (1974).
[CrossRef]

J. F. Osantowski, A. R. Toft, NASA Goddard Space Flight Center; unpublished data.

J. F. Osantowski, NASA Goddard Space Flight Center; unpublished data.

Palik, E. D.

W. J. Choyke, E. D. Palik, “Silicon Carbide (SiC),” in Handbook of Optical Constants of Solids, E. D. Palik, Ed. (Academic, New York, 1985).

Partlow, W. D.

W. D. Partlow, “Plasma CVD: New Ways to Control Thin Film Deposition Processes,” Proc. Soc. Photo-Opt. Instrum Eng. 678, 24 (1986).

W. D. Partlow, L. E. Kline, “Homogeneous and Heterogeneous Chemistry of Methane Deposition Plasmas,” in Proceedings, MRS Spring Conference, Symposium C on Plasma Processing, Palo Alto (1986).

W. D. Partlow, H. Herzig, “Influence of Plasma Excitation Frequency on the Properties of a-SiC:H Produced in a Glow Discharge Plasma,” in Proceedings, MRS Conference, Symposium F on Materials Issues in Applications of Amorphous Silicon Technology, San Francisco (1985).

W. D. Partlow, “Develop Techniques for Applying Silicon Carbide Coatings,” Final Report, NASA Contract NAS5-27679 (1984).

Rehn, V.

V. Rehn, V. O. Jones, “Vacuum Ultraviolet (VUV) and Soft X-Ray Mirrors for Synchrotron Radiation,” Opt. Eng. 17, 504 (1978).
[CrossRef]

Rife, J. C.

J. C. Rife, J. F. Osantowski, “Optical Constants in the Extreme Ultraviolet and Soft X-Ray Region,” Proc. Soc. Photo-Opt. Instrum. Eng. 315, 103 (1981).

J. C. Rife, J. Osantowski, “Extreme Ultraviolet Optical Properties of Two SiO2 Based Low-Expansion Materials,” J. Opt. Soc. Am. 70, 1513 (1980).
[CrossRef]

Saha, T. T.

J. F. Osantowski, P. M. Davila, T. T. Saha, “Telescope Technology for the Far Ultraviolet Spectroscopic Explorer (FUSE),” Opt. Eng. 25, 1039 (1986).
[CrossRef]

T. T. Saha, D. A. Thomas, J. F. Osantowski, “OSAC Analysis of the Far Ultraviolet Spectroscopic Explorer (FUSE) Telescope,” Proc. Soc. Photo-Opt. Instrum. Eng. 640, 79 (1986).

Sanger, G.

S. Mrowka, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160 (1985).

Thomas, D. A.

T. T. Saha, D. A. Thomas, J. F. Osantowski, “OSAC Analysis of the Far Ultraviolet Spectroscopic Explorer (FUSE) Telescope,” Proc. Soc. Photo-Opt. Instrum. Eng. 640, 79 (1986).

Toft, A. R.

J. F. Osantowski, A. R. Toft, NASA Goddard Space Flight Center; unpublished data.

J. Opt. Soc. Am. (4)

J. Phys. (1)

L. R. Canfield, G. Hass, W. R. Hunter, “The Optical Properties of Evaporated Gold in the Vacuum Ultraviolet from 300 Å to 2000 Å,” J. Phys. 25, 124 (1964).
[CrossRef]

Opt. Eng. (2)

J. F. Osantowski, P. M. Davila, T. T. Saha, “Telescope Technology for the Far Ultraviolet Spectroscopic Explorer (FUSE),” Opt. Eng. 25, 1039 (1986).
[CrossRef]

V. Rehn, V. O. Jones, “Vacuum Ultraviolet (VUV) and Soft X-Ray Mirrors for Synchrotron Radiation,” Opt. Eng. 17, 504 (1978).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum Eng. (1)

W. D. Partlow, “Plasma CVD: New Ways to Control Thin Film Deposition Processes,” Proc. Soc. Photo-Opt. Instrum Eng. 678, 24 (1986).

Proc. Soc. Photo-Opt. Instrum. Eng. (3)

J. C. Rife, J. F. Osantowski, “Optical Constants in the Extreme Ultraviolet and Soft X-Ray Region,” Proc. Soc. Photo-Opt. Instrum. Eng. 315, 103 (1981).

S. Mrowka, P. Jelinsky, S. Bowyer, G. Sanger, W. J. Choyke, “Reflectivity of Silicon Carbide in the Extreme Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 597, 160 (1985).

T. T. Saha, D. A. Thomas, J. F. Osantowski, “OSAC Analysis of the Far Ultraviolet Spectroscopic Explorer (FUSE) Telescope,” Proc. Soc. Photo-Opt. Instrum. Eng. 640, 79 (1986).

Other (6)

W. J. Choyke, E. D. Palik, “Silicon Carbide (SiC),” in Handbook of Optical Constants of Solids, E. D. Palik, Ed. (Academic, New York, 1985).

J. F. Osantowski, NASA Goddard Space Flight Center; unpublished data.

J. F. Osantowski, A. R. Toft, NASA Goddard Space Flight Center; unpublished data.

W. D. Partlow, L. E. Kline, “Homogeneous and Heterogeneous Chemistry of Methane Deposition Plasmas,” in Proceedings, MRS Spring Conference, Symposium C on Plasma Processing, Palo Alto (1986).

W. D. Partlow, H. Herzig, “Influence of Plasma Excitation Frequency on the Properties of a-SiC:H Produced in a Glow Discharge Plasma,” in Proceedings, MRS Conference, Symposium F on Materials Issues in Applications of Amorphous Silicon Technology, San Francisco (1985).

W. D. Partlow, “Develop Techniques for Applying Silicon Carbide Coatings,” Final Report, NASA Contract NAS5-27679 (1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of a plasma deposition reactor.

Fig. 2
Fig. 2

Schematic diagram of a plasma deposition reactor with the powered electrode configuration.

Fig. 3
Fig. 3

Vacuum UV reflectivity of plasma-deposited silicon carbide thin films produced at low and high frequencies compared with data for polished CVD silicon carbide. The methane/silane ratio for plasma films is 17.3.

Fig. 4
Fig. 4

Measured reflectance of plasma-deposited silicon carbide films at 10° (-▲-) and 20° (-●-) grazing angles of incidence. The measured reflectance for polished CVD silicon carbide at the same angles is shown for comparison.

Fig. 5
Fig. 5

Reflectance at 10° grazing angle for silicon carbide film and polished electroless Ni and Cer-Vit (Zerodur).

Fig. 6
Fig. 6

Reflectance at 20° grazing angle for silicon carbide film and polished electroless Ni and Cer-Vit (Zerodur).

Fig. 7
Fig. 7

Reflectance at 10° grazing angle for silicon carbide film, gold, iridium, and platinum.

Fig. 8
Fig. 8

Reflectance at 20° grazing angle for silicon carbide film, gold, iridium, and platinum.

Fig. 9
Fig. 9

Calculated effective area for a Wolter-Schwarzschild type II telescope with gold-coated primary and secondary mirrors (—), polished CVD silicon carbide (- -), and silicon carbide film (●).

Metrics