Abstract

The prospects for imaging x rays at energies from 10 to 40 keV with grazing incidence optics are explored. The scientific rationale and existing laboratory measurements are reviewed. Measurements of reflectivity using possible mirror materials are described. Iridium-coated float glass gives an improved performance over gold by the factor predicted by theory but both had a lower absolute level. This may be due to a lower density of the thin metal layer caused by the deposition method. The reflectivity of a sample of iridium-coated float glass was measured at small grazing angles (25–5 min of arc) at energies of 8, 17, and 26 keV. High reflectivity (>50%) was seen out to angles of 33, 16, and 11 min of arc, respectively. These are close to the theoretical values. A design for a high energy imaging telescope of the Explorer class is described.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Grindlay, M. R. Garcia, R. I. Burg, S. S. Murray, “The Energetic X-Ray Imaging Telescope Experiment (EXITE),” IEEE Trans. Nucl. Sci. NS-33, 735 (1986).
  2. A. Levine et al., “The HEAO 1 A-4 Catalog of High-Energy X-Ray Sources,” Astrophys. J. 54, 581 (1984).
    [CrossRef]
  3. F. E. Marshall et al., “The Diffuse X-Ray Background Spectrum from 3 to 50 keV,” Astrophys. J. 235, 4 (1980).
    [CrossRef]
  4. D. H. Bilderback, S. Hubbard, “X-Ray Mirror Reflectivities from 3.8 to 50 keV (3.3 to .25 Å). I: Float Glass,” Nuclear Instruments and Methods, Physics Research, 195, 85 (1982).
    [CrossRef]
  5. D. H. Bilderback, S. Hubbard, “X-Ray Mirror Reflectivities from 3.8 to 50 keV (3.3 to .25 Å) II. Pt, Si and Other Materials,” Nuclear Instruments and Methods, Physics Research, 195, 91 (1982).
    [CrossRef]
  6. P. J. Serlemitsos, “Broad Band X-Ray Telescope (BBXRT),” in X-Ray Astronomy in the 1980s, NASA Tech. Memo. 83848 (1981).
  7. R. Giacconi, W. P. Reidy, G. S. Vaiana, L. P. Van Speybroeck, T. F. Zehnpfennig, “Grazing Incidence Telescopes for X-Ray Astronomy,” Space Sci. Rev. 9, 3 (1969).
    [CrossRef]
  8. B. Aschenbach, “X-Ray Telescopes,” Rep. Prog. Phys. 48, 579 (1985).
    [CrossRef]
  9. O. Citterio, Astronomical Observatory of Brera Merate; private communication (1986).

1986 (1)

J. G. Grindlay, M. R. Garcia, R. I. Burg, S. S. Murray, “The Energetic X-Ray Imaging Telescope Experiment (EXITE),” IEEE Trans. Nucl. Sci. NS-33, 735 (1986).

1985 (1)

B. Aschenbach, “X-Ray Telescopes,” Rep. Prog. Phys. 48, 579 (1985).
[CrossRef]

1984 (1)

A. Levine et al., “The HEAO 1 A-4 Catalog of High-Energy X-Ray Sources,” Astrophys. J. 54, 581 (1984).
[CrossRef]

1982 (2)

D. H. Bilderback, S. Hubbard, “X-Ray Mirror Reflectivities from 3.8 to 50 keV (3.3 to .25 Å). I: Float Glass,” Nuclear Instruments and Methods, Physics Research, 195, 85 (1982).
[CrossRef]

D. H. Bilderback, S. Hubbard, “X-Ray Mirror Reflectivities from 3.8 to 50 keV (3.3 to .25 Å) II. Pt, Si and Other Materials,” Nuclear Instruments and Methods, Physics Research, 195, 91 (1982).
[CrossRef]

1980 (1)

F. E. Marshall et al., “The Diffuse X-Ray Background Spectrum from 3 to 50 keV,” Astrophys. J. 235, 4 (1980).
[CrossRef]

1969 (1)

R. Giacconi, W. P. Reidy, G. S. Vaiana, L. P. Van Speybroeck, T. F. Zehnpfennig, “Grazing Incidence Telescopes for X-Ray Astronomy,” Space Sci. Rev. 9, 3 (1969).
[CrossRef]

Aschenbach, B.

B. Aschenbach, “X-Ray Telescopes,” Rep. Prog. Phys. 48, 579 (1985).
[CrossRef]

Bilderback, D. H.

D. H. Bilderback, S. Hubbard, “X-Ray Mirror Reflectivities from 3.8 to 50 keV (3.3 to .25 Å). I: Float Glass,” Nuclear Instruments and Methods, Physics Research, 195, 85 (1982).
[CrossRef]

D. H. Bilderback, S. Hubbard, “X-Ray Mirror Reflectivities from 3.8 to 50 keV (3.3 to .25 Å) II. Pt, Si and Other Materials,” Nuclear Instruments and Methods, Physics Research, 195, 91 (1982).
[CrossRef]

Burg, R. I.

J. G. Grindlay, M. R. Garcia, R. I. Burg, S. S. Murray, “The Energetic X-Ray Imaging Telescope Experiment (EXITE),” IEEE Trans. Nucl. Sci. NS-33, 735 (1986).

Citterio, O.

O. Citterio, Astronomical Observatory of Brera Merate; private communication (1986).

Garcia, M. R.

J. G. Grindlay, M. R. Garcia, R. I. Burg, S. S. Murray, “The Energetic X-Ray Imaging Telescope Experiment (EXITE),” IEEE Trans. Nucl. Sci. NS-33, 735 (1986).

Giacconi, R.

R. Giacconi, W. P. Reidy, G. S. Vaiana, L. P. Van Speybroeck, T. F. Zehnpfennig, “Grazing Incidence Telescopes for X-Ray Astronomy,” Space Sci. Rev. 9, 3 (1969).
[CrossRef]

Grindlay, J. G.

J. G. Grindlay, M. R. Garcia, R. I. Burg, S. S. Murray, “The Energetic X-Ray Imaging Telescope Experiment (EXITE),” IEEE Trans. Nucl. Sci. NS-33, 735 (1986).

Hubbard, S.

D. H. Bilderback, S. Hubbard, “X-Ray Mirror Reflectivities from 3.8 to 50 keV (3.3 to .25 Å) II. Pt, Si and Other Materials,” Nuclear Instruments and Methods, Physics Research, 195, 91 (1982).
[CrossRef]

D. H. Bilderback, S. Hubbard, “X-Ray Mirror Reflectivities from 3.8 to 50 keV (3.3 to .25 Å). I: Float Glass,” Nuclear Instruments and Methods, Physics Research, 195, 85 (1982).
[CrossRef]

Levine, A.

A. Levine et al., “The HEAO 1 A-4 Catalog of High-Energy X-Ray Sources,” Astrophys. J. 54, 581 (1984).
[CrossRef]

Marshall, F. E.

F. E. Marshall et al., “The Diffuse X-Ray Background Spectrum from 3 to 50 keV,” Astrophys. J. 235, 4 (1980).
[CrossRef]

Murray, S. S.

J. G. Grindlay, M. R. Garcia, R. I. Burg, S. S. Murray, “The Energetic X-Ray Imaging Telescope Experiment (EXITE),” IEEE Trans. Nucl. Sci. NS-33, 735 (1986).

Reidy, W. P.

R. Giacconi, W. P. Reidy, G. S. Vaiana, L. P. Van Speybroeck, T. F. Zehnpfennig, “Grazing Incidence Telescopes for X-Ray Astronomy,” Space Sci. Rev. 9, 3 (1969).
[CrossRef]

Serlemitsos, P. J.

P. J. Serlemitsos, “Broad Band X-Ray Telescope (BBXRT),” in X-Ray Astronomy in the 1980s, NASA Tech. Memo. 83848 (1981).

Vaiana, G. S.

R. Giacconi, W. P. Reidy, G. S. Vaiana, L. P. Van Speybroeck, T. F. Zehnpfennig, “Grazing Incidence Telescopes for X-Ray Astronomy,” Space Sci. Rev. 9, 3 (1969).
[CrossRef]

Van Speybroeck, L. P.

R. Giacconi, W. P. Reidy, G. S. Vaiana, L. P. Van Speybroeck, T. F. Zehnpfennig, “Grazing Incidence Telescopes for X-Ray Astronomy,” Space Sci. Rev. 9, 3 (1969).
[CrossRef]

Zehnpfennig, T. F.

R. Giacconi, W. P. Reidy, G. S. Vaiana, L. P. Van Speybroeck, T. F. Zehnpfennig, “Grazing Incidence Telescopes for X-Ray Astronomy,” Space Sci. Rev. 9, 3 (1969).
[CrossRef]

Astrophys. J. (2)

A. Levine et al., “The HEAO 1 A-4 Catalog of High-Energy X-Ray Sources,” Astrophys. J. 54, 581 (1984).
[CrossRef]

F. E. Marshall et al., “The Diffuse X-Ray Background Spectrum from 3 to 50 keV,” Astrophys. J. 235, 4 (1980).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

J. G. Grindlay, M. R. Garcia, R. I. Burg, S. S. Murray, “The Energetic X-Ray Imaging Telescope Experiment (EXITE),” IEEE Trans. Nucl. Sci. NS-33, 735 (1986).

Nuclear Instruments and Methods, Physics Research (2)

D. H. Bilderback, S. Hubbard, “X-Ray Mirror Reflectivities from 3.8 to 50 keV (3.3 to .25 Å). I: Float Glass,” Nuclear Instruments and Methods, Physics Research, 195, 85 (1982).
[CrossRef]

D. H. Bilderback, S. Hubbard, “X-Ray Mirror Reflectivities from 3.8 to 50 keV (3.3 to .25 Å) II. Pt, Si and Other Materials,” Nuclear Instruments and Methods, Physics Research, 195, 91 (1982).
[CrossRef]

Rep. Prog. Phys. (1)

B. Aschenbach, “X-Ray Telescopes,” Rep. Prog. Phys. 48, 579 (1985).
[CrossRef]

Space Sci. Rev. (1)

R. Giacconi, W. P. Reidy, G. S. Vaiana, L. P. Van Speybroeck, T. F. Zehnpfennig, “Grazing Incidence Telescopes for X-Ray Astronomy,” Space Sci. Rev. 9, 3 (1969).
[CrossRef]

Other (2)

O. Citterio, Astronomical Observatory of Brera Merate; private communication (1986).

P. J. Serlemitsos, “Broad Band X-Ray Telescope (BBXRT),” in X-Ray Astronomy in the 1980s, NASA Tech. Memo. 83848 (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Comparison of gold and iridium reflectivities at 8.1 keV (Cu–K): ○, 175-Å layer of iridium on float glass; ×, +, two examples of a 500-Å gold layer on float glass.

Fig. 2
Fig. 2

Reflectivity of a 175-Å layer of iridium on float glass at 8.1 keV (○, Cu–K), 17.6 keV (×, Nb–K), and 26.8 keV (□, Sn–K). Theoretical curves for the three energies are shown: that for 8.1 keV (dots) is based on measured optical constants; those for 17.6 keV (short dashes) and 26.8 keV (long dashes) are based on predicted optical constants (see text).

Fig. 3
Fig. 3

Illustrations of the multifocus Kirkpatrick-Baez geometry: (a) isometric view showing crossed sets of mirrors. Each intersection of a front and a rear fan forms a separate telescope. Note: All the angles shown are greatly exaggerated. In practice since the grazing angles are never >20 min of arc, the reflectors are essentially parallel, (b) Top view of a 10 × 10 module instrument with an expanded view of one module showing the arrangement of the plates.

Fig. 4
Fig. 4

Effective area of the proposed 3-m 35- × 35-cm instrument as a function of energy for (a) 0.1-mm foils, (b) 0.7-mm float glass.

Tables (1)

Tables Icon

Table I Imaging Science at 10–40 keV

Metrics