Abstract

Designing optics for photometry in the long-wavelength portion of the EUV spectrum (400–900 Å) poses different problems from those arising for optics, operating shortward of 400 Å. The available filter materials which transmit radiation longward of 400 Å are also highly transparent at wavelengths shortward of 100 Å. Conventional EUV optics, with grazing angles of ≲10°, have very high throughput in the EUV, which persists to wavelengths shortward of 100 Å. Use of such optics with the longer-wavelength EUV filters thus results in an unacceptably large soft x-ray leak. We have overcome this problem by developing a mirror design with larger graze angles ≥20°, which has high throughput at wavelengths longer than 400 Å but at the same time very little throughput shortward of 100 Å.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Bowyer, “The Extreme Ultraviolet Explorer,” Adv. Space Res. 6, 153 (1986).
    [CrossRef]
  2. R. F. Malina, S. Bowyer, M. Lampton, D. Finley, F. Paresce, G. Penegor, H. Heetderks, “Extreme Ultraviolet Explorer,” Opt. Eng. 21, 764 (1982).
    [CrossRef]
  3. M. C. Hettrick, S. Bowyer, R. F. Malina, C. Martin, S. Mrowka, “Extreme Ultraviolet Explorer Spectrometer,” Appl. Opt. 24, 1737 (1985).
    [CrossRef] [PubMed]
  4. S. Chakrabarti, S. Bowyer, F. Paresce, J. B. Franke, A. B. Christensen, “Long Term Variability of Transmission of Thin In–Sn and Sn–C Films for EUV Instrumentation,” Appl. Opt. 21, 3417 (1982).
    [CrossRef] [PubMed]
  5. P. Jelinsky, C. Martin, R. Kimble, S. Bowyer, G. Steele, “Composite Thin-Foil Bandpass Filter for EUV Astronomy: Titanium-Antimony-Titanium,” Appl. Opt. 22, 1227 (1983).
    [CrossRef] [PubMed]
  6. S. Labov, S. Bowyer, G. Steele, “Boron and Silicon: Filters for the Extreme Ultraviolet,” Appl. Opt. 24, 576 (1985).
    [CrossRef] [PubMed]
  7. J. V. Vallerga, O. H. W. Siegmund, P. Jelinsky, M. Hurwitz, “The Calibration of Thin Film Filters to be Used on the Extreme Ultraviolet Explorer Satellite,” Proc. Soc. Photo-Opt. Instrum. Eng. 689, 138 (1986).
  8. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
    [CrossRef]
  9. L. R. Canfield, G. Hass, W. R. Hunter, “The Optical Properties of Evaporated Gold in the Vacuum Ultraviolet from 300 Å to 2000 Å,” J. Phys. 25, 124 (1964).
    [CrossRef]

1986 (2)

S. Bowyer, “The Extreme Ultraviolet Explorer,” Adv. Space Res. 6, 153 (1986).
[CrossRef]

J. V. Vallerga, O. H. W. Siegmund, P. Jelinsky, M. Hurwitz, “The Calibration of Thin Film Filters to be Used on the Extreme Ultraviolet Explorer Satellite,” Proc. Soc. Photo-Opt. Instrum. Eng. 689, 138 (1986).

1985 (2)

1983 (1)

1982 (3)

S. Chakrabarti, S. Bowyer, F. Paresce, J. B. Franke, A. B. Christensen, “Long Term Variability of Transmission of Thin In–Sn and Sn–C Films for EUV Instrumentation,” Appl. Opt. 21, 3417 (1982).
[CrossRef] [PubMed]

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

R. F. Malina, S. Bowyer, M. Lampton, D. Finley, F. Paresce, G. Penegor, H. Heetderks, “Extreme Ultraviolet Explorer,” Opt. Eng. 21, 764 (1982).
[CrossRef]

1964 (1)

L. R. Canfield, G. Hass, W. R. Hunter, “The Optical Properties of Evaporated Gold in the Vacuum Ultraviolet from 300 Å to 2000 Å,” J. Phys. 25, 124 (1964).
[CrossRef]

Bowyer, S.

Canfield, L. R.

L. R. Canfield, G. Hass, W. R. Hunter, “The Optical Properties of Evaporated Gold in the Vacuum Ultraviolet from 300 Å to 2000 Å,” J. Phys. 25, 124 (1964).
[CrossRef]

Chakrabarti, S.

Christensen, A. B.

Finley, D.

R. F. Malina, S. Bowyer, M. Lampton, D. Finley, F. Paresce, G. Penegor, H. Heetderks, “Extreme Ultraviolet Explorer,” Opt. Eng. 21, 764 (1982).
[CrossRef]

Franke, J. B.

Fujikawa, B. K.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

Hass, G.

L. R. Canfield, G. Hass, W. R. Hunter, “The Optical Properties of Evaporated Gold in the Vacuum Ultraviolet from 300 Å to 2000 Å,” J. Phys. 25, 124 (1964).
[CrossRef]

Heetderks, H.

R. F. Malina, S. Bowyer, M. Lampton, D. Finley, F. Paresce, G. Penegor, H. Heetderks, “Extreme Ultraviolet Explorer,” Opt. Eng. 21, 764 (1982).
[CrossRef]

Henke, B. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

Hettrick, M. C.

Hunter, W. R.

L. R. Canfield, G. Hass, W. R. Hunter, “The Optical Properties of Evaporated Gold in the Vacuum Ultraviolet from 300 Å to 2000 Å,” J. Phys. 25, 124 (1964).
[CrossRef]

Hurwitz, M.

J. V. Vallerga, O. H. W. Siegmund, P. Jelinsky, M. Hurwitz, “The Calibration of Thin Film Filters to be Used on the Extreme Ultraviolet Explorer Satellite,” Proc. Soc. Photo-Opt. Instrum. Eng. 689, 138 (1986).

Jelinsky, P.

J. V. Vallerga, O. H. W. Siegmund, P. Jelinsky, M. Hurwitz, “The Calibration of Thin Film Filters to be Used on the Extreme Ultraviolet Explorer Satellite,” Proc. Soc. Photo-Opt. Instrum. Eng. 689, 138 (1986).

P. Jelinsky, C. Martin, R. Kimble, S. Bowyer, G. Steele, “Composite Thin-Foil Bandpass Filter for EUV Astronomy: Titanium-Antimony-Titanium,” Appl. Opt. 22, 1227 (1983).
[CrossRef] [PubMed]

Kimble, R.

Labov, S.

Lampton, M.

R. F. Malina, S. Bowyer, M. Lampton, D. Finley, F. Paresce, G. Penegor, H. Heetderks, “Extreme Ultraviolet Explorer,” Opt. Eng. 21, 764 (1982).
[CrossRef]

Lee, P.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

Malina, R. F.

M. C. Hettrick, S. Bowyer, R. F. Malina, C. Martin, S. Mrowka, “Extreme Ultraviolet Explorer Spectrometer,” Appl. Opt. 24, 1737 (1985).
[CrossRef] [PubMed]

R. F. Malina, S. Bowyer, M. Lampton, D. Finley, F. Paresce, G. Penegor, H. Heetderks, “Extreme Ultraviolet Explorer,” Opt. Eng. 21, 764 (1982).
[CrossRef]

Martin, C.

Mrowka, S.

Paresce, F.

Penegor, G.

R. F. Malina, S. Bowyer, M. Lampton, D. Finley, F. Paresce, G. Penegor, H. Heetderks, “Extreme Ultraviolet Explorer,” Opt. Eng. 21, 764 (1982).
[CrossRef]

Shimabukuro, R. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

Siegmund, O. H. W.

J. V. Vallerga, O. H. W. Siegmund, P. Jelinsky, M. Hurwitz, “The Calibration of Thin Film Filters to be Used on the Extreme Ultraviolet Explorer Satellite,” Proc. Soc. Photo-Opt. Instrum. Eng. 689, 138 (1986).

Steele, G.

Tanaka, T. J.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

Vallerga, J. V.

J. V. Vallerga, O. H. W. Siegmund, P. Jelinsky, M. Hurwitz, “The Calibration of Thin Film Filters to be Used on the Extreme Ultraviolet Explorer Satellite,” Proc. Soc. Photo-Opt. Instrum. Eng. 689, 138 (1986).

Adv. Space Res. (1)

S. Bowyer, “The Extreme Ultraviolet Explorer,” Adv. Space Res. 6, 153 (1986).
[CrossRef]

Appl. Opt. (4)

At. Data Nucl. Data Tables (1)

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

J. Phys. (1)

L. R. Canfield, G. Hass, W. R. Hunter, “The Optical Properties of Evaporated Gold in the Vacuum Ultraviolet from 300 Å to 2000 Å,” J. Phys. 25, 124 (1964).
[CrossRef]

Opt. Eng. (1)

R. F. Malina, S. Bowyer, M. Lampton, D. Finley, F. Paresce, G. Penegor, H. Heetderks, “Extreme Ultraviolet Explorer,” Opt. Eng. 21, 764 (1982).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. V. Vallerga, O. H. W. Siegmund, P. Jelinsky, M. Hurwitz, “The Calibration of Thin Film Filters to be Used on the Extreme Ultraviolet Explorer Satellite,” Proc. Soc. Photo-Opt. Instrum. Eng. 689, 138 (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

EUVE Type I scanner mirror schematic diagram (section view). Light enters from the left and is brought into focus on the right.

Fig. 2
Fig. 2

Gold-plated Type I scanner mirror effective area as a function of wavelength, computed from optical constants.

Fig. 3
Fig. 3

Type I scanner instrumental effective area vs wavelength for a titanium/antimony filter (solid curve). The primary bandpass is ~400–650 Å. Also plotted is the effective area for a tin filter (dotted curve). The primary bandpass is ~520–850 Å.

Fig. 4
Fig. 4

Minimum detectable flux (MDF) of mirror candidates, including a Ti/Sb filter, plotted vs focal length. MDF is in photons cm−2 s−1 Å−1, assuming a flat incident photon spectrum. The triangle represents a normal incidence mirror. The square represents a Type I scanner mirror. The filled circle represents a Type II scanner mirror after optimization.

Fig. 5
Fig. 5

Instrument configuration showing optical elements. Ray paths shown are for the extreme rays which define baffle locations and mirror surface end points.

Fig. 6
Fig. 6

EUVE Type II scanner mirror schematic diagram (section view). Light enters from the left and is brought into focus on the right.

Fig. 7
Fig. 7

Type II scanner mirror imaging performance. Intrinsic rms blur radius, as a function of off-axis angle for a mirror alone, in plane of best on-axis focus.

Fig. 8
Fig. 8

Gold-plated Type II scanner mirror effective area vs wavelength calculated from optical constants. Throughput at 100 Å is virtually negligible.

Fig. 9
Fig. 9

Type II scanner instrumental effective area vs wavelength for a titanium/antimony filter (solid curve), and for a tin filter (dotted curve); includes mirror reflectivity, filter transmission, and detector QE.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A eff ( 500 Å ) A eff ( 100 Å ) > 30 ,

Metrics