Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-G. Walther, A. Duparré, G. Schirmer, “Scattering Reduction or Enhancement by a Dielectric Single Layer,” Appl. Opt. 25, 4527 (1986).
    [CrossRef] [PubMed]
  2. J. R. McNeil, L. J. Wei, G. A. Al-Jumaily, S. Shakir, J. K. McIver, “Surface Smoothing Effects of Thin Film Deposition,” Appl. Opt. 24, 480 (1985).
    [CrossRef] [PubMed]
  3. J. M. Elson, “Infrared Light Scattering from Surfaces Covered with Multiple Dielectric Overlayers,” Appl. Opt. 16, 2872 (1977).
    [CrossRef] [PubMed]

1986 (1)

1985 (1)

1977 (1)

Al-Jumaily, G. A.

Duparré, A.

Elson, J. M.

McIver, J. K.

McNeil, J. R.

Schirmer, G.

Shakir, S.

Walther, H.-G.

Wei, L. J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Angular scattering measured on half-side sputtered TiO2 samples: A,B, different substrate polishes; 1, substrate side, 2, TiO2 film side. (All samples were overcoated with a 40-nm thick silver film). The open circles represent additional film scattering FAggμμ calculated from the measured data.

Fig. 2
Fig. 2

Same as Fig. 1 but for e-beam evaporated TiO2 films. C,D; different substrate polishes.

Fig. 3
Fig. 3

Dependence of the smoothing effect on the spatial frequency. The ga are calculated from the measured angular scattering by Eq. (10): ○, sputtered samples; ●, evaporated samples.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ξ 2 ( r ) = a ξ 1 ( r ) + μ ( r ) ,
ξ 2 ( r ) = a ( ζ ) ξ 1 ( r ζ ) d ζ + μ ( r ) .
G 11 ( τ ) = ξ 1 ( r ) ξ 1 ( r + τ ) , G 22 ( τ ) = ξ 2 ( r ) ξ 2 ( r + τ ) = G a ( ζ ) G 11 ( τ ζ ) d ζ + G μ μ , G 12 ( τ ) = ξ 1 ( r ) ξ 2 ( r + τ ) = a ( ζ ) G 11 ( τ ζ ) d ζ , G 21 ( τ ) = G 12 ( τ ) ,
g 22 ( k ) = g a ( k ) g 11 ( k ) + g μ μ ( k ) ;
g 12 ( k ) = F T { a ( r ) } g 11 ( k ) = g 21 ( k ) .
S ( k ) = F 11 g 11 ( k ) + 2 Re [ F 12 g 12 ( k ) ] + F 22 g 22 ( k ) ,
S 0 ( k ) = F Ag g 11 ( k ) ,
S ( k ) = F Ag g 22 ( k ) .
S = g a S 0 + F Ag g μ μ .
g a = S A S B S 0 A S 0 B ,
g μ μ = S A , B g a S 0 A , B F Ag .

Metrics