Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. F. Alferov, Yu. A. Bashmakov, E. G. Bessonov, “Undulator Radiation,” Zh. Tekh. Fiz. 43, 2126 (1973) [Sov. Phys. Tech. Phys. 18, 1336 (1974)].
  2. S. Krinsky, M. L. Perlman, R. E. Watson, “Characteristics of Synchrontron Radiation from Storage Rings, Wigglers, and Undulators,” in Handbook on Synchrotron Radiation, Vol. 1A, E. E. Koch, Ed. (North-Holland, Amsterdam, 1983); K.-J. Kim, “Characteristics of Synchrotron Radiation,” in X-Ray Data Booklet (Center for X-Ray Optics, Berkeley, 1985).
  3. R. Coisson, “Undulators for the ESRP: Practical Formulas and Examples,” Report ESRP-IRM-34/84 (Geneva1984); “Synchrotron Insertion Devices as Optical Sources: a Tutorial,” (Soc. Photo-Opt. Instrum. Eng. Berlin1986).
  4. K.-J. Kim, “A New Formulation of Synchrotron Radiation Optics Using the Wigner Distribution,” Proc. Soc. Photo-Opt. Instrum. Eng. 582, 2 (1986).
  5. R. Coisson, R. P. Walker, “Phase Space Distribution of Brilliance of Undulator Sources,” Proc. Soc. Photo-Opt. Instrum. Eng. 582, 24 (1986).
  6. R. Coisson, “Effective Phase Space Widths of Undulator Radiation,” to be published in Optical Engineering, Mar.1988.
    [CrossRef]

1986 (2)

K.-J. Kim, “A New Formulation of Synchrotron Radiation Optics Using the Wigner Distribution,” Proc. Soc. Photo-Opt. Instrum. Eng. 582, 2 (1986).

R. Coisson, R. P. Walker, “Phase Space Distribution of Brilliance of Undulator Sources,” Proc. Soc. Photo-Opt. Instrum. Eng. 582, 24 (1986).

1973 (1)

D. F. Alferov, Yu. A. Bashmakov, E. G. Bessonov, “Undulator Radiation,” Zh. Tekh. Fiz. 43, 2126 (1973) [Sov. Phys. Tech. Phys. 18, 1336 (1974)].

Alferov, D. F.

D. F. Alferov, Yu. A. Bashmakov, E. G. Bessonov, “Undulator Radiation,” Zh. Tekh. Fiz. 43, 2126 (1973) [Sov. Phys. Tech. Phys. 18, 1336 (1974)].

Bashmakov, Yu. A.

D. F. Alferov, Yu. A. Bashmakov, E. G. Bessonov, “Undulator Radiation,” Zh. Tekh. Fiz. 43, 2126 (1973) [Sov. Phys. Tech. Phys. 18, 1336 (1974)].

Bessonov, E. G.

D. F. Alferov, Yu. A. Bashmakov, E. G. Bessonov, “Undulator Radiation,” Zh. Tekh. Fiz. 43, 2126 (1973) [Sov. Phys. Tech. Phys. 18, 1336 (1974)].

Coisson, R.

R. Coisson, R. P. Walker, “Phase Space Distribution of Brilliance of Undulator Sources,” Proc. Soc. Photo-Opt. Instrum. Eng. 582, 24 (1986).

R. Coisson, “Effective Phase Space Widths of Undulator Radiation,” to be published in Optical Engineering, Mar.1988.
[CrossRef]

R. Coisson, “Undulators for the ESRP: Practical Formulas and Examples,” Report ESRP-IRM-34/84 (Geneva1984); “Synchrotron Insertion Devices as Optical Sources: a Tutorial,” (Soc. Photo-Opt. Instrum. Eng. Berlin1986).

Kim, K.-J.

K.-J. Kim, “A New Formulation of Synchrotron Radiation Optics Using the Wigner Distribution,” Proc. Soc. Photo-Opt. Instrum. Eng. 582, 2 (1986).

Krinsky, S.

S. Krinsky, M. L. Perlman, R. E. Watson, “Characteristics of Synchrontron Radiation from Storage Rings, Wigglers, and Undulators,” in Handbook on Synchrotron Radiation, Vol. 1A, E. E. Koch, Ed. (North-Holland, Amsterdam, 1983); K.-J. Kim, “Characteristics of Synchrotron Radiation,” in X-Ray Data Booklet (Center for X-Ray Optics, Berkeley, 1985).

Perlman, M. L.

S. Krinsky, M. L. Perlman, R. E. Watson, “Characteristics of Synchrontron Radiation from Storage Rings, Wigglers, and Undulators,” in Handbook on Synchrotron Radiation, Vol. 1A, E. E. Koch, Ed. (North-Holland, Amsterdam, 1983); K.-J. Kim, “Characteristics of Synchrotron Radiation,” in X-Ray Data Booklet (Center for X-Ray Optics, Berkeley, 1985).

Walker, R. P.

R. Coisson, R. P. Walker, “Phase Space Distribution of Brilliance of Undulator Sources,” Proc. Soc. Photo-Opt. Instrum. Eng. 582, 24 (1986).

Watson, R. E.

S. Krinsky, M. L. Perlman, R. E. Watson, “Characteristics of Synchrontron Radiation from Storage Rings, Wigglers, and Undulators,” in Handbook on Synchrotron Radiation, Vol. 1A, E. E. Koch, Ed. (North-Holland, Amsterdam, 1983); K.-J. Kim, “Characteristics of Synchrotron Radiation,” in X-Ray Data Booklet (Center for X-Ray Optics, Berkeley, 1985).

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

K.-J. Kim, “A New Formulation of Synchrotron Radiation Optics Using the Wigner Distribution,” Proc. Soc. Photo-Opt. Instrum. Eng. 582, 2 (1986).

R. Coisson, R. P. Walker, “Phase Space Distribution of Brilliance of Undulator Sources,” Proc. Soc. Photo-Opt. Instrum. Eng. 582, 24 (1986).

Zh. Tekh. Fiz. (1)

D. F. Alferov, Yu. A. Bashmakov, E. G. Bessonov, “Undulator Radiation,” Zh. Tekh. Fiz. 43, 2126 (1973) [Sov. Phys. Tech. Phys. 18, 1336 (1974)].

Other (3)

S. Krinsky, M. L. Perlman, R. E. Watson, “Characteristics of Synchrontron Radiation from Storage Rings, Wigglers, and Undulators,” in Handbook on Synchrotron Radiation, Vol. 1A, E. E. Koch, Ed. (North-Holland, Amsterdam, 1983); K.-J. Kim, “Characteristics of Synchrotron Radiation,” in X-Ray Data Booklet (Center for X-Ray Optics, Berkeley, 1985).

R. Coisson, “Undulators for the ESRP: Practical Formulas and Examples,” Report ESRP-IRM-34/84 (Geneva1984); “Synchrotron Insertion Devices as Optical Sources: a Tutorial,” (Soc. Photo-Opt. Instrum. Eng. Berlin1986).

R. Coisson, “Effective Phase Space Widths of Undulator Radiation,” to be published in Optical Engineering, Mar.1988.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Function Ui(K) giving the flux in Eq. (2) as a function of the deflection parameter K for the ith harmonic: odd harmonics are indicated with dashed lines; even harmonics with continuous lines.

Fig. 2
Fig. 2

Undulator universal curve Ui(λ/λ1). The same as Fig. 1 but expressed as a function of the peak output reduced wavelength λ/λ1, where λ1 = λ0/2γ2. Equivalently, the independent variable can be expressed as ω1/ω = λ/λ1 (with ω1 = 2πc1).

Tables (1)

Tables Icon

Table I Intensity and Approximate Phase Space Widths of Second, Fourth, and Sixth Harmonics for Various Values of the Deflection Parameter K

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Σ x , y ~ ( σ x , y 2 + σ R 2 ) 1 / 2 , Σ x , y ~ ( σ x , y 2 + σ R 2 ) 1 / 2 .
Φ i = F I N U i ,
K = e B 0 λ 0 2 π m c = 0 . 934 λ 0 ( cm ) B 0 ( T ) .
λ = λ 0 2 γ 2 i ( 1 + K 2 / 2 + γ 2 θ m 2 )
θ θ m , Δ x ~ L θ m / ( 2 π ) 1 / 2 .

Metrics