Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K.-H. Brenner, A. Huang, “An Optical Processor Based on Symbolic Substitution,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1985), paper WA4.
  2. C. Perlee, D. P. Casasent, “Negative Base Encoding in Optical Linear Algebra Processors,” Appl. Opt. 25, 168 (1986).
    [CrossRef] [PubMed]
  3. N. Takagi, H. Yasuura, S. Yajima, “High Speed VLSI Multiplication Algorithm with a Redundant Binary Addition Tree,” IEEE Trans. Comput. COM-34, 789 (1985).
    [CrossRef]
  4. A. Avizienis, “Signed-Digit Number Representations for Fast Parallel Arithmetic,” IRE Trans. Electron. Comput. EC-10, 389 (1961).
    [CrossRef]
  5. M. P. De Regt, “Negative Radix Arithmetic,” Comput. Design 6, 52 (May1967).
  6. S. Zohar, “Negative Radix Conversion,” IEEE Trans. Comput. C-19, 222 (1970).
    [CrossRef]
  7. R. P. Bocker, B. L. Drake, M. E. Lasher, T. B. Henderson, “Modified Signed-Digit Addition and Subtraction using Optical Symbolic Substitution,” Appl. Opt. 25, 2456 (1986).
    [CrossRef] [PubMed]

1986 (2)

1985 (1)

N. Takagi, H. Yasuura, S. Yajima, “High Speed VLSI Multiplication Algorithm with a Redundant Binary Addition Tree,” IEEE Trans. Comput. COM-34, 789 (1985).
[CrossRef]

1970 (1)

S. Zohar, “Negative Radix Conversion,” IEEE Trans. Comput. C-19, 222 (1970).
[CrossRef]

1967 (1)

M. P. De Regt, “Negative Radix Arithmetic,” Comput. Design 6, 52 (May1967).

1961 (1)

A. Avizienis, “Signed-Digit Number Representations for Fast Parallel Arithmetic,” IRE Trans. Electron. Comput. EC-10, 389 (1961).
[CrossRef]

Avizienis, A.

A. Avizienis, “Signed-Digit Number Representations for Fast Parallel Arithmetic,” IRE Trans. Electron. Comput. EC-10, 389 (1961).
[CrossRef]

Bocker, R. P.

Brenner, K.-H.

K.-H. Brenner, A. Huang, “An Optical Processor Based on Symbolic Substitution,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1985), paper WA4.

Casasent, D. P.

De Regt, M. P.

M. P. De Regt, “Negative Radix Arithmetic,” Comput. Design 6, 52 (May1967).

Drake, B. L.

Henderson, T. B.

Huang, A.

K.-H. Brenner, A. Huang, “An Optical Processor Based on Symbolic Substitution,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1985), paper WA4.

Lasher, M. E.

Perlee, C.

Takagi, N.

N. Takagi, H. Yasuura, S. Yajima, “High Speed VLSI Multiplication Algorithm with a Redundant Binary Addition Tree,” IEEE Trans. Comput. COM-34, 789 (1985).
[CrossRef]

Yajima, S.

N. Takagi, H. Yasuura, S. Yajima, “High Speed VLSI Multiplication Algorithm with a Redundant Binary Addition Tree,” IEEE Trans. Comput. COM-34, 789 (1985).
[CrossRef]

Yasuura, H.

N. Takagi, H. Yasuura, S. Yajima, “High Speed VLSI Multiplication Algorithm with a Redundant Binary Addition Tree,” IEEE Trans. Comput. COM-34, 789 (1985).
[CrossRef]

Zohar, S.

S. Zohar, “Negative Radix Conversion,” IEEE Trans. Comput. C-19, 222 (1970).
[CrossRef]

Appl. Opt. (2)

Comput. Design (1)

M. P. De Regt, “Negative Radix Arithmetic,” Comput. Design 6, 52 (May1967).

IEEE Trans. Comput. (2)

S. Zohar, “Negative Radix Conversion,” IEEE Trans. Comput. C-19, 222 (1970).
[CrossRef]

N. Takagi, H. Yasuura, S. Yajima, “High Speed VLSI Multiplication Algorithm with a Redundant Binary Addition Tree,” IEEE Trans. Comput. COM-34, 789 (1985).
[CrossRef]

IRE Trans. Electron. Comput. (1)

A. Avizienis, “Signed-Digit Number Representations for Fast Parallel Arithmetic,” IRE Trans. Electron. Comput. EC-10, 389 (1961).
[CrossRef]

Other (1)

K.-H. Brenner, A. Huang, “An Optical Processor Based on Symbolic Substitution,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1985), paper WA4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (7)

Equations on this page are rendered with MathJax. Learn more.

1 N c n 2 n 1 ,
2 N 1 N c n 2 n 1 = 1 M c m 2 m 1
1 M c m 2 m 1
1 M c m ( 1 ¯ ) 2 m 1 ,
1 N c n 2 n 1 ,
2 N + 1 M c m ( 1 ¯ ) 2 m 1 .
1 K c k 2 k 1 ,

Metrics