Abstract

A microlens fabrication process is described which can be used in applications requiring integration of optical elements (lenses) and microcircuits. The process is fully compatible with IC fabrication technology and uses commercially available IC processing materials. The obtained microlenses are of excellent quality and basically show diffraction-limited resolution with ~1-μm spot size. Extensions of the process to production of nonspherical lenses and use of alternative material packages are also discussed.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. N. Ozerov, V. M. Petrov, V. a. Shishkina, V. M. Shor, “Shaping the Contours of Dies for Manufacturing Lens Arrays Having Spherical Elements,” Sov. J. Opt. Technol. 48, 49 (1981).
  2. M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion Exchange Technique,” Jpn. J. Appl. Phys. 20, L296 (1981).
    [CrossRef]
  3. N. F. Borrelli, D. L. Morse, R. H. Bellman, W. L. Morgan, “Photolytic Technique for Producing Microlenses in Photosensitive Glass,” Appl. Opt. 24, 2520 (1985).
    [CrossRef] [PubMed]
  4. O. Wada, S. Yamakoshi, M. Abe, Y. Nishitani, T. Sakurai, “High Radiance InGaAsP/InP LED’s for Optical Communication Systems at 1.2–1.3μm,” IEEE J. Quantum Electron. QE-17, 174 (1981).
    [CrossRef]
  5. Y. Ishihara, K. Tanigaki, “A High Photosensitivity IL-CCD Image Sensor with Monolithic Resin Lens Array,” in Proceedings, International Electron Devices Meeting, Washington, DC (Sept. 1983), pp. 497–500.
  6. J. F. Oliver, C. Huh, S. G. Mason, “Resistance to Spreading of Liquids by Sharp Edges,” J. Colloid Interface Sci. 59, 568 (1977).
    [CrossRef]
  7. R. Allen, M. Foster, Y. Yen, “Deep U.V. Hardening of Positive Photoresist Patterns,” J. Electrochem. Soc. 129, 1379 (1982).
    [CrossRef]

1985 (1)

1982 (1)

R. Allen, M. Foster, Y. Yen, “Deep U.V. Hardening of Positive Photoresist Patterns,” J. Electrochem. Soc. 129, 1379 (1982).
[CrossRef]

1981 (3)

O. Wada, S. Yamakoshi, M. Abe, Y. Nishitani, T. Sakurai, “High Radiance InGaAsP/InP LED’s for Optical Communication Systems at 1.2–1.3μm,” IEEE J. Quantum Electron. QE-17, 174 (1981).
[CrossRef]

I. N. Ozerov, V. M. Petrov, V. a. Shishkina, V. M. Shor, “Shaping the Contours of Dies for Manufacturing Lens Arrays Having Spherical Elements,” Sov. J. Opt. Technol. 48, 49 (1981).

M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion Exchange Technique,” Jpn. J. Appl. Phys. 20, L296 (1981).
[CrossRef]

1977 (1)

J. F. Oliver, C. Huh, S. G. Mason, “Resistance to Spreading of Liquids by Sharp Edges,” J. Colloid Interface Sci. 59, 568 (1977).
[CrossRef]

Abe, M.

O. Wada, S. Yamakoshi, M. Abe, Y. Nishitani, T. Sakurai, “High Radiance InGaAsP/InP LED’s for Optical Communication Systems at 1.2–1.3μm,” IEEE J. Quantum Electron. QE-17, 174 (1981).
[CrossRef]

Allen, R.

R. Allen, M. Foster, Y. Yen, “Deep U.V. Hardening of Positive Photoresist Patterns,” J. Electrochem. Soc. 129, 1379 (1982).
[CrossRef]

Bellman, R. H.

Borrelli, N. F.

Foster, M.

R. Allen, M. Foster, Y. Yen, “Deep U.V. Hardening of Positive Photoresist Patterns,” J. Electrochem. Soc. 129, 1379 (1982).
[CrossRef]

Huh, C.

J. F. Oliver, C. Huh, S. G. Mason, “Resistance to Spreading of Liquids by Sharp Edges,” J. Colloid Interface Sci. 59, 568 (1977).
[CrossRef]

Iga, K.

M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion Exchange Technique,” Jpn. J. Appl. Phys. 20, L296 (1981).
[CrossRef]

Ishihara, Y.

Y. Ishihara, K. Tanigaki, “A High Photosensitivity IL-CCD Image Sensor with Monolithic Resin Lens Array,” in Proceedings, International Electron Devices Meeting, Washington, DC (Sept. 1983), pp. 497–500.

Mason, S. G.

J. F. Oliver, C. Huh, S. G. Mason, “Resistance to Spreading of Liquids by Sharp Edges,” J. Colloid Interface Sci. 59, 568 (1977).
[CrossRef]

Morgan, W. L.

Morse, D. L.

Nishitani, Y.

O. Wada, S. Yamakoshi, M. Abe, Y. Nishitani, T. Sakurai, “High Radiance InGaAsP/InP LED’s for Optical Communication Systems at 1.2–1.3μm,” IEEE J. Quantum Electron. QE-17, 174 (1981).
[CrossRef]

Nishizawa, K.

M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion Exchange Technique,” Jpn. J. Appl. Phys. 20, L296 (1981).
[CrossRef]

Oikawa, M.

M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion Exchange Technique,” Jpn. J. Appl. Phys. 20, L296 (1981).
[CrossRef]

Oliver, J. F.

J. F. Oliver, C. Huh, S. G. Mason, “Resistance to Spreading of Liquids by Sharp Edges,” J. Colloid Interface Sci. 59, 568 (1977).
[CrossRef]

Ozerov, I. N.

I. N. Ozerov, V. M. Petrov, V. a. Shishkina, V. M. Shor, “Shaping the Contours of Dies for Manufacturing Lens Arrays Having Spherical Elements,” Sov. J. Opt. Technol. 48, 49 (1981).

Petrov, V. M.

I. N. Ozerov, V. M. Petrov, V. a. Shishkina, V. M. Shor, “Shaping the Contours of Dies for Manufacturing Lens Arrays Having Spherical Elements,” Sov. J. Opt. Technol. 48, 49 (1981).

Sakurai, T.

O. Wada, S. Yamakoshi, M. Abe, Y. Nishitani, T. Sakurai, “High Radiance InGaAsP/InP LED’s for Optical Communication Systems at 1.2–1.3μm,” IEEE J. Quantum Electron. QE-17, 174 (1981).
[CrossRef]

Sanada, T.

M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion Exchange Technique,” Jpn. J. Appl. Phys. 20, L296 (1981).
[CrossRef]

Shishkina, V. a.

I. N. Ozerov, V. M. Petrov, V. a. Shishkina, V. M. Shor, “Shaping the Contours of Dies for Manufacturing Lens Arrays Having Spherical Elements,” Sov. J. Opt. Technol. 48, 49 (1981).

Shor, V. M.

I. N. Ozerov, V. M. Petrov, V. a. Shishkina, V. M. Shor, “Shaping the Contours of Dies for Manufacturing Lens Arrays Having Spherical Elements,” Sov. J. Opt. Technol. 48, 49 (1981).

Tanigaki, K.

Y. Ishihara, K. Tanigaki, “A High Photosensitivity IL-CCD Image Sensor with Monolithic Resin Lens Array,” in Proceedings, International Electron Devices Meeting, Washington, DC (Sept. 1983), pp. 497–500.

Wada, O.

O. Wada, S. Yamakoshi, M. Abe, Y. Nishitani, T. Sakurai, “High Radiance InGaAsP/InP LED’s for Optical Communication Systems at 1.2–1.3μm,” IEEE J. Quantum Electron. QE-17, 174 (1981).
[CrossRef]

Yamakoshi, S.

O. Wada, S. Yamakoshi, M. Abe, Y. Nishitani, T. Sakurai, “High Radiance InGaAsP/InP LED’s for Optical Communication Systems at 1.2–1.3μm,” IEEE J. Quantum Electron. QE-17, 174 (1981).
[CrossRef]

Yamamoto, N.

M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion Exchange Technique,” Jpn. J. Appl. Phys. 20, L296 (1981).
[CrossRef]

Yen, Y.

R. Allen, M. Foster, Y. Yen, “Deep U.V. Hardening of Positive Photoresist Patterns,” J. Electrochem. Soc. 129, 1379 (1982).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

O. Wada, S. Yamakoshi, M. Abe, Y. Nishitani, T. Sakurai, “High Radiance InGaAsP/InP LED’s for Optical Communication Systems at 1.2–1.3μm,” IEEE J. Quantum Electron. QE-17, 174 (1981).
[CrossRef]

J. Colloid Interface Sci. (1)

J. F. Oliver, C. Huh, S. G. Mason, “Resistance to Spreading of Liquids by Sharp Edges,” J. Colloid Interface Sci. 59, 568 (1977).
[CrossRef]

J. Electrochem. Soc. (1)

R. Allen, M. Foster, Y. Yen, “Deep U.V. Hardening of Positive Photoresist Patterns,” J. Electrochem. Soc. 129, 1379 (1982).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Oikawa, K. Iga, T. Sanada, N. Yamamoto, K. Nishizawa, “Array of Distributed-Index Planar Micro-Lenses Prepared from Ion Exchange Technique,” Jpn. J. Appl. Phys. 20, L296 (1981).
[CrossRef]

Sov. J. Opt. Technol. (1)

I. N. Ozerov, V. M. Petrov, V. a. Shishkina, V. M. Shor, “Shaping the Contours of Dies for Manufacturing Lens Arrays Having Spherical Elements,” Sov. J. Opt. Technol. 48, 49 (1981).

Other (1)

Y. Ishihara, K. Tanigaki, “A High Photosensitivity IL-CCD Image Sensor with Monolithic Resin Lens Array,” in Proceedings, International Electron Devices Meeting, Washington, DC (Sept. 1983), pp. 497–500.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Process steps for production of microlenses: (a) Al film is deposited on a quartz substrate and patterned with 15-μm holes; (b) 30-μm diam circular pedestals are formed on top of the aperture holes; (c) 25-μm diam, 12-μm high cylinders are developed on top of the pedestals; (d) heating to 140°C for 15 min produces the microlenses.

Fig. 2
Fig. 2

Micrograph of a grid imaged through the microlenses with 32-μm center-to-center spacing.

Fig. 3
Fig. 3

Intensity distribution at a focus of one microlens. Horizontal scale, representing distance, is 1 μm/div. The peak width at half-maximum is 1.2 μm.

Fig. 4
Fig. 4

Scanning electron micrograph of a part of the microlens array produced by the process described in the text.

Metrics