Abstract

A new and simple way for a microscope to make an interferogram is proposed and demonstrated. This method is based on the polarization interferometry of the changing polarizability of light by a half-mirror using a laser as the light source. It is convenient to use a microscope to observe concentration gradients and phase objects, such as studies of crystal growth.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), Chap. 7.
  2. H. Komatsu, “Optical Characterization of Crystal Surfaces,” in Crystal Growth of Electronic Materials, E. Kaldis, Ed. (Elsevier, New York, 1985), Chap. 28.
  3. J. Szydlowska, B. Janowska, “Holographic Measurement of Diffusion Coefficients,” J. Phys. D 15, 1385 (1982).
    [Crossref]
  4. K. Matsuda, S. Watanabe, T. Eiju, “Real-Time Measurement of Large Liquid Surface Deformation Using a Holographic Shearing Interferometer,” Appl. Opt. 24, 4443 (1985).
    [Crossref] [PubMed]
  5. L. Gabelmann-Gray, H. Fenichel, “Holographic Interferometric Study of Liquid Diffusion,” Appl. Opt. 18, 343 (1979).
    [Crossref] [PubMed]
  6. F. Ruiz-Bevia, A. Celdran-Mallol, C. Santos-Garcia, J. Fernandez-Sempere, “Holographic Interferometric Study of Free Diffusion: a New Mathematical Treatment,” Appl. Opt. 24, 1481 (1985).
    [Crossref] [PubMed]
  7. J. Krasinski, D. F. Heller, O. Kafri, “Phase Object Microscopy Using Moire Deflectometry,” Appl. Opt. 24, 3032 (1985).
    [Crossref] [PubMed]
  8. O. Kafri, “Noncoherent Method for Mapping Phase Objects,” Opt. Lett. 5, 555 (1980).
    [Crossref] [PubMed]
  9. M. V. R. K. Murty, “The Use of a Single Plane Parallel Plate as a Lateral Shearing Interferometer with a Visible Gas Laser Source,” Appl. Opt. 3, 531 (1964).
    [Crossref]
  10. Ref. 1, Chap. 1.

1985 (3)

1982 (1)

J. Szydlowska, B. Janowska, “Holographic Measurement of Diffusion Coefficients,” J. Phys. D 15, 1385 (1982).
[Crossref]

1980 (1)

1979 (1)

1964 (1)

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), Chap. 7.

Celdran-Mallol, A.

Eiju, T.

Fenichel, H.

Fernandez-Sempere, J.

Gabelmann-Gray, L.

Heller, D. F.

Janowska, B.

J. Szydlowska, B. Janowska, “Holographic Measurement of Diffusion Coefficients,” J. Phys. D 15, 1385 (1982).
[Crossref]

Kafri, O.

Komatsu, H.

H. Komatsu, “Optical Characterization of Crystal Surfaces,” in Crystal Growth of Electronic Materials, E. Kaldis, Ed. (Elsevier, New York, 1985), Chap. 28.

Krasinski, J.

Matsuda, K.

Murty, M. V. R. K.

Ruiz-Bevia, F.

Santos-Garcia, C.

Szydlowska, J.

J. Szydlowska, B. Janowska, “Holographic Measurement of Diffusion Coefficients,” J. Phys. D 15, 1385 (1982).
[Crossref]

Watanabe, S.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), Chap. 7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Polarization by reflection and refraction using a glass plate as a half-mirror.

Fig. 2
Fig. 2

(A) Schematic diagram of a reflection-type polarization microscope. (B) Construction of the vibration components transmitted by a polarizer and an analyzer; interferograms can be obtained at the positions illustrated by arrows.

Fig. 3
Fig. 3

(A) Reflection microscope image of an oil droplet with a 10× objective lens. (B) Interferogram pattern with the same magnification as in that on the left.

Fig. 4
Fig. 4

Two complementary interferograms of an oil droplet obtained at the positions of the analyzer indicated by arrows (A1, A2).

Fig. 5
Fig. 5

Interferograms of an oil droplet with objective lens: (A) 4×, (B) 10×, (C) 20×.

Fig. 6
Fig. 6

Inteferograms in (A) the growing state, (B) the equilibrium state, and (C) the dissolving state. (D) Crystal growth of Salol from an ethanol–water solution system.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C p F p = tan ( ψ + χ ) 2 tan ( ψ χ ) 2 , C s F s = sin ( ψ χ ) 2 sin ( ψ + χ ) 2 .
δ = ( 4 / λ ) π n 2 d cos θ 2 , = ( 4 / λ ) d n 2 2 n 1 2 sin θ 1 2 ,

Metrics