Abstract

A new optical chemical sensor was developed for chemical sensing based on light-excited surface plasmon measurement. Concentration of the chemical species is found in liquid or gas without the help of a reagent but by measuring the resonance condition of the surface plasmon on the sensing metal surface. The resonance condition is given by the dielectric constant of the sample faced on the metal. The developed sensor can be compact and simple, because of the absence of mechanical moving parts, by using multichannel angular light intensity detection with a photodiode array and a Fourier transform optical setup. Experimental results are shown for measurement of ethanol concentration in water. The detection limit for ethanol in water was 10−4 wt./wt. by the experiments with the developed system.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Czaban, “Electrochemical Sensors in Clinical Chemistry: Yesterday, Today, Tomorrow,” Anal. Chem. 57, 346A (1985).
  2. I. Lundstrom, S. Shivaraman, C. Svensson, L. Lundkvist, “A Hydrogen-Sensitive MOS Field-Effect Transistor,” Appl. Phys. Lett. 26, 55 (1975).
    [CrossRef]
  3. W. R. Seitz, “Chemical Sensors Based on Fiber Optics,” Anal. Chem. 56, 16A (1984).
  4. H. Raether, “Surface Plasma Oscillations and Their Applications,” Phys. Thin Films 9, 145 (1977).
  5. H. Raether, “Surface Plasma Oscillations as a Tool for Surface Examinations,” Surf. Sci. 8, 233 (1967).
    [CrossRef]
  6. E. Kretschmann, “Die Bestimmung der optischen Konstanten dunner Schichten in der Nähe der Plasmafrequenz aus Kurvenfeldern konstanter Transmission,” Z. Phys. 221, 346 (1969).
    [CrossRef]
  7. R. H. Huebner, E. T. Arakawa, R. A. MacRae, R. N. Hamm, “Optical Constants of Vacuum-Evaporated Silver Films,” J. Opt. Soc. Am. 54, 1434 (1964).
    [CrossRef]
  8. J. L. Stanford, “Determination of Surface-Film Thickness from Shift of Optically Excited Surface Plasma Resonance,” J. Opt. Soc. Am. 60, 49 (1970).
    [CrossRef]
  9. C. Nylander, B. Liedberg, T. Lind, “Gas Detection by Means of Surface Plasmon Resonance,” Sensors Actuators, 3, 79 (1982/83).
    [CrossRef]
  10. M. F. Flanagan, R. H. Pantell, “Surface Plasmon Resonance and Immunosensors,” Electron. Lett. 20, 968 (1984).
    [CrossRef]
  11. E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von oberflâchenplasmaschwingungen,” Z. Phys. 241, 313 (1971).
    [CrossRef]
  12. T. Turbadar, “Complete Absorption of Plane Polarized Light by Thin Metallic Films,” Opt. Acta 11, 207 (1964).
    [CrossRef]

1985 (1)

J. D. Czaban, “Electrochemical Sensors in Clinical Chemistry: Yesterday, Today, Tomorrow,” Anal. Chem. 57, 346A (1985).

1984 (2)

W. R. Seitz, “Chemical Sensors Based on Fiber Optics,” Anal. Chem. 56, 16A (1984).

M. F. Flanagan, R. H. Pantell, “Surface Plasmon Resonance and Immunosensors,” Electron. Lett. 20, 968 (1984).
[CrossRef]

1977 (1)

H. Raether, “Surface Plasma Oscillations and Their Applications,” Phys. Thin Films 9, 145 (1977).

1975 (1)

I. Lundstrom, S. Shivaraman, C. Svensson, L. Lundkvist, “A Hydrogen-Sensitive MOS Field-Effect Transistor,” Appl. Phys. Lett. 26, 55 (1975).
[CrossRef]

1971 (1)

E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von oberflâchenplasmaschwingungen,” Z. Phys. 241, 313 (1971).
[CrossRef]

1970 (1)

1969 (1)

E. Kretschmann, “Die Bestimmung der optischen Konstanten dunner Schichten in der Nähe der Plasmafrequenz aus Kurvenfeldern konstanter Transmission,” Z. Phys. 221, 346 (1969).
[CrossRef]

1967 (1)

H. Raether, “Surface Plasma Oscillations as a Tool for Surface Examinations,” Surf. Sci. 8, 233 (1967).
[CrossRef]

1964 (2)

R. H. Huebner, E. T. Arakawa, R. A. MacRae, R. N. Hamm, “Optical Constants of Vacuum-Evaporated Silver Films,” J. Opt. Soc. Am. 54, 1434 (1964).
[CrossRef]

T. Turbadar, “Complete Absorption of Plane Polarized Light by Thin Metallic Films,” Opt. Acta 11, 207 (1964).
[CrossRef]

Arakawa, E. T.

Czaban, J. D.

J. D. Czaban, “Electrochemical Sensors in Clinical Chemistry: Yesterday, Today, Tomorrow,” Anal. Chem. 57, 346A (1985).

Flanagan, M. F.

M. F. Flanagan, R. H. Pantell, “Surface Plasmon Resonance and Immunosensors,” Electron. Lett. 20, 968 (1984).
[CrossRef]

Hamm, R. N.

Huebner, R. H.

Kretschmann, E.

E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von oberflâchenplasmaschwingungen,” Z. Phys. 241, 313 (1971).
[CrossRef]

E. Kretschmann, “Die Bestimmung der optischen Konstanten dunner Schichten in der Nähe der Plasmafrequenz aus Kurvenfeldern konstanter Transmission,” Z. Phys. 221, 346 (1969).
[CrossRef]

Liedberg, B.

C. Nylander, B. Liedberg, T. Lind, “Gas Detection by Means of Surface Plasmon Resonance,” Sensors Actuators, 3, 79 (1982/83).
[CrossRef]

Lind, T.

C. Nylander, B. Liedberg, T. Lind, “Gas Detection by Means of Surface Plasmon Resonance,” Sensors Actuators, 3, 79 (1982/83).
[CrossRef]

Lundkvist, L.

I. Lundstrom, S. Shivaraman, C. Svensson, L. Lundkvist, “A Hydrogen-Sensitive MOS Field-Effect Transistor,” Appl. Phys. Lett. 26, 55 (1975).
[CrossRef]

Lundstrom, I.

I. Lundstrom, S. Shivaraman, C. Svensson, L. Lundkvist, “A Hydrogen-Sensitive MOS Field-Effect Transistor,” Appl. Phys. Lett. 26, 55 (1975).
[CrossRef]

MacRae, R. A.

Nylander, C.

C. Nylander, B. Liedberg, T. Lind, “Gas Detection by Means of Surface Plasmon Resonance,” Sensors Actuators, 3, 79 (1982/83).
[CrossRef]

Pantell, R. H.

M. F. Flanagan, R. H. Pantell, “Surface Plasmon Resonance and Immunosensors,” Electron. Lett. 20, 968 (1984).
[CrossRef]

Raether, H.

H. Raether, “Surface Plasma Oscillations and Their Applications,” Phys. Thin Films 9, 145 (1977).

H. Raether, “Surface Plasma Oscillations as a Tool for Surface Examinations,” Surf. Sci. 8, 233 (1967).
[CrossRef]

Seitz, W. R.

W. R. Seitz, “Chemical Sensors Based on Fiber Optics,” Anal. Chem. 56, 16A (1984).

Shivaraman, S.

I. Lundstrom, S. Shivaraman, C. Svensson, L. Lundkvist, “A Hydrogen-Sensitive MOS Field-Effect Transistor,” Appl. Phys. Lett. 26, 55 (1975).
[CrossRef]

Stanford, J. L.

Svensson, C.

I. Lundstrom, S. Shivaraman, C. Svensson, L. Lundkvist, “A Hydrogen-Sensitive MOS Field-Effect Transistor,” Appl. Phys. Lett. 26, 55 (1975).
[CrossRef]

Turbadar, T.

T. Turbadar, “Complete Absorption of Plane Polarized Light by Thin Metallic Films,” Opt. Acta 11, 207 (1964).
[CrossRef]

Anal. Chem. (2)

W. R. Seitz, “Chemical Sensors Based on Fiber Optics,” Anal. Chem. 56, 16A (1984).

J. D. Czaban, “Electrochemical Sensors in Clinical Chemistry: Yesterday, Today, Tomorrow,” Anal. Chem. 57, 346A (1985).

Appl. Phys. Lett. (1)

I. Lundstrom, S. Shivaraman, C. Svensson, L. Lundkvist, “A Hydrogen-Sensitive MOS Field-Effect Transistor,” Appl. Phys. Lett. 26, 55 (1975).
[CrossRef]

Electron. Lett. (1)

M. F. Flanagan, R. H. Pantell, “Surface Plasmon Resonance and Immunosensors,” Electron. Lett. 20, 968 (1984).
[CrossRef]

J. Opt. Soc. Am. (2)

Opt. Acta (1)

T. Turbadar, “Complete Absorption of Plane Polarized Light by Thin Metallic Films,” Opt. Acta 11, 207 (1964).
[CrossRef]

Phys. Thin Films (1)

H. Raether, “Surface Plasma Oscillations and Their Applications,” Phys. Thin Films 9, 145 (1977).

Sensors Actuators (1)

C. Nylander, B. Liedberg, T. Lind, “Gas Detection by Means of Surface Plasmon Resonance,” Sensors Actuators, 3, 79 (1982/83).
[CrossRef]

Surf. Sci. (1)

H. Raether, “Surface Plasma Oscillations as a Tool for Surface Examinations,” Surf. Sci. 8, 233 (1967).
[CrossRef]

Z. Phys. (2)

E. Kretschmann, “Die Bestimmung der optischen Konstanten dunner Schichten in der Nähe der Plasmafrequenz aus Kurvenfeldern konstanter Transmission,” Z. Phys. 221, 346 (1969).
[CrossRef]

E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von oberflâchenplasmaschwingungen,” Z. Phys. 241, 313 (1971).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Dispersion of light in sample Ks and surface plasmon Ksp. The ordinate is frequency and the abscissa is wave vector.

Fig. 2
Fig. 2

Kretschmann’s configuration for observing SPR.

Fig. 3
Fig. 3

Dispersion of evanescent lightwave K and surface plasmon Ksp.

Fig. 4
Fig. 4

Schematic diagram of the developed system.

Fig. 5
Fig. 5

Reflectance curve of air obtained with our SPR sensor system.

Fig. 6
Fig. 6

Reflectance curves of pure water and 5% ethanol in water obtained with our SPR sensor system.

Fig. 7
Fig. 7

Calibration curve for angular shift measurement of ethanol concentration in water.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

K s p ω c ε m r ε s ε m r + ε s ,
K s = ω c ε s .
K e υ = K g sin θ = ω c ε g sin θ ,
K e υ = K s p .
δ θ = tan 1 ( W / 2 f ) N ,

Metrics