Abstract

A noninvasive spectrophotometric technique for the measurement of oxygen saturation of the blood in discrete retinal vessels is described. The instrument, the retinal vessel oximeter, uses scanning fundus reflectometry to determine the optical density of a retinal vessel at three wavelengths (558, 569, and 586 nm). Oxygen saturation is determined after compensation for the effects of light scattering by the red blood cells by relating the measured densities with the corresponding extinction coefficients of oxyhemoglobin and deoxygenated hemoglobin. The vessel diameter is also measured continuously. All data acquisition and analysis are performed on-line by means of a microcomputer, and a vessel tracking system is used to compensate for the effects of eye movements. Oxygen saturation measurements for blood flowing through glass capillaries are presented as well as representative results of oxygen saturation measurements on normal human subjects.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription