Abstract

We present a numerical model for the transient response of a longitudinally pumped miniature solid-state laser. The model is suitable for both regenerative amplifiers and oscillators, provided the latter run in a single mode. The results of our calculations compare well with measurements of the peak output powers and pulse widths for a Nd:YAG rod pumped by a ten-stripe diode laser array. Our model predicts saturation at peak powers of approximately twice the 850 mW reported here due to filling of the lower laser level. To overcome this power limitation due to saturation, we also explore the use of miniature Nd:glass laser amplifiers to boost the single-frequency Nd:YAG pulses to powers exceeding 200 W.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Sipes, “Highly Efficient Neodymium: Yttrium Aluminum Garnet Laser End Pumped by a Semiconductor Laser Array,” Appl. Phys. Lett. 47, 74 (1985).
    [CrossRef]
  2. B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, “Efficient, Frequency-Stable Laser-Diode-Pumped Nd:YAG Laser,” Opt. Lett. 10, 62 (1985).
    [CrossRef] [PubMed]
  3. A. Owyoung, G. R. Hadley, P. Esherick, R. L. Schmitt, L. A. Rahn, “Gain Switching of a Monolithic Single-Frequency Laser-Diode-Excited Nd:YAG Laser,” Opt. Lett. 10, 484 (1985).
    [CrossRef] [PubMed]
  4. Y. K. Park, G. Guiliani, R. L. Byer, “Stable Single-Axial-Mode Operation of an Unstable-Resonator Nd:YAG Oscillator by Injection Locking,” Opt. Lett. 5, 96 (1980).
    [CrossRef] [PubMed]
  5. R. L. Schmitt, L. A. Rahn, “Diode-Laser-Pumped Nd:YAG Laser Injection Seeding System,” Appl. Opt. 25, 629 (1986).
    [CrossRef] [PubMed]
  6. A. G. Fox, T. Li, “Resonant Modes in a Maser Interferometer,” Bell Syst. Tech. J. 40, 453 (1961).
  7. D. B. Rensch, “Three-Dimensional Unstable Resonator Calculations with Laser Medium,” Appl. Opt. 13, 2546 (1974).
    [CrossRef] [PubMed]
  8. G. P. Agrawal, “Fast-Fourier-Transform Based Beam-Propagation Model for Stripe-Geometry Lasers: Inclusion of Axial Effects,” J. Appl. Phys. 56, 3100 (1984).
    [CrossRef]
  9. G. R. Hadley, J. P. Hohimer, A. Owyoung, “High-Order (ν > 10) Eigenmodes in Ten-Stripe Gain-Guided Diode Laser Arrays,” Appl. Phys. Lett. 49, 684 (1986).
    [CrossRef]
  10. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, (1976), p. 54.
  11. S. T. Hendow, S. A. Shakir, “Recursive Numerical Solution for Nonlinear Wave Propagation in Fibers and Cylindrically Symmetric Systems,” Appl. Opt. 25, 1759 (1986).
    [CrossRef] [PubMed]
  12. C. Chang-Hasnain, D. P. Worland, D. R. Scifres, “High-Intensity Fibre-Coupled Diode Laser Array,” Electron. Lett. 22, 65 (1986).
    [CrossRef]
  13. R. L. Thornton, D. F. Welch, R. D. Burnham, T. L. Paoli, P. S. Cross, High Power (2.1 W) 10-Stripe AlGaAs Laser Arrays with Si Disordered Facet Windows,” Appl. Phys. Lett. 49, 1572 (1986).
    [CrossRef]
  14. A. Owyoung, P. Esherick, “Uses of Elastooptically Tuned Diode Laser-Excited Monolithic (Nd:YAG) Lasers,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), paper WN1.
  15. P. Esherick, A. Owyoung, “Polarization Feedback Stabilization of an Injection-Seeded Nd:YAG Laser for Spectroscopic Applications,” J. Opt. Soc. Am. B 4, 41 (1987).
    [CrossRef]
  16. Schott Glass Technologies Inc., 400 York Ave., Duryea, PA 18642.

1987 (1)

1986 (5)

G. R. Hadley, J. P. Hohimer, A. Owyoung, “High-Order (ν > 10) Eigenmodes in Ten-Stripe Gain-Guided Diode Laser Arrays,” Appl. Phys. Lett. 49, 684 (1986).
[CrossRef]

S. T. Hendow, S. A. Shakir, “Recursive Numerical Solution for Nonlinear Wave Propagation in Fibers and Cylindrically Symmetric Systems,” Appl. Opt. 25, 1759 (1986).
[CrossRef] [PubMed]

C. Chang-Hasnain, D. P. Worland, D. R. Scifres, “High-Intensity Fibre-Coupled Diode Laser Array,” Electron. Lett. 22, 65 (1986).
[CrossRef]

R. L. Thornton, D. F. Welch, R. D. Burnham, T. L. Paoli, P. S. Cross, High Power (2.1 W) 10-Stripe AlGaAs Laser Arrays with Si Disordered Facet Windows,” Appl. Phys. Lett. 49, 1572 (1986).
[CrossRef]

R. L. Schmitt, L. A. Rahn, “Diode-Laser-Pumped Nd:YAG Laser Injection Seeding System,” Appl. Opt. 25, 629 (1986).
[CrossRef] [PubMed]

1985 (3)

1984 (1)

G. P. Agrawal, “Fast-Fourier-Transform Based Beam-Propagation Model for Stripe-Geometry Lasers: Inclusion of Axial Effects,” J. Appl. Phys. 56, 3100 (1984).
[CrossRef]

1980 (1)

1974 (1)

1961 (1)

A. G. Fox, T. Li, “Resonant Modes in a Maser Interferometer,” Bell Syst. Tech. J. 40, 453 (1961).

Agrawal, G. P.

G. P. Agrawal, “Fast-Fourier-Transform Based Beam-Propagation Model for Stripe-Geometry Lasers: Inclusion of Axial Effects,” J. Appl. Phys. 56, 3100 (1984).
[CrossRef]

Burnham, R. D.

R. L. Thornton, D. F. Welch, R. D. Burnham, T. L. Paoli, P. S. Cross, High Power (2.1 W) 10-Stripe AlGaAs Laser Arrays with Si Disordered Facet Windows,” Appl. Phys. Lett. 49, 1572 (1986).
[CrossRef]

Byer, R. L.

Chang-Hasnain, C.

C. Chang-Hasnain, D. P. Worland, D. R. Scifres, “High-Intensity Fibre-Coupled Diode Laser Array,” Electron. Lett. 22, 65 (1986).
[CrossRef]

Cross, P. S.

R. L. Thornton, D. F. Welch, R. D. Burnham, T. L. Paoli, P. S. Cross, High Power (2.1 W) 10-Stripe AlGaAs Laser Arrays with Si Disordered Facet Windows,” Appl. Phys. Lett. 49, 1572 (1986).
[CrossRef]

Dixon, G. J.

Esherick, P.

Fox, A. G.

A. G. Fox, T. Li, “Resonant Modes in a Maser Interferometer,” Bell Syst. Tech. J. 40, 453 (1961).

Guiliani, G.

Hadley, G. R.

G. R. Hadley, J. P. Hohimer, A. Owyoung, “High-Order (ν > 10) Eigenmodes in Ten-Stripe Gain-Guided Diode Laser Arrays,” Appl. Phys. Lett. 49, 684 (1986).
[CrossRef]

A. Owyoung, G. R. Hadley, P. Esherick, R. L. Schmitt, L. A. Rahn, “Gain Switching of a Monolithic Single-Frequency Laser-Diode-Excited Nd:YAG Laser,” Opt. Lett. 10, 484 (1985).
[CrossRef] [PubMed]

Hendow, S. T.

Hohimer, J. P.

G. R. Hadley, J. P. Hohimer, A. Owyoung, “High-Order (ν > 10) Eigenmodes in Ten-Stripe Gain-Guided Diode Laser Arrays,” Appl. Phys. Lett. 49, 684 (1986).
[CrossRef]

Kane, T. J.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, (1976), p. 54.

Li, T.

A. G. Fox, T. Li, “Resonant Modes in a Maser Interferometer,” Bell Syst. Tech. J. 40, 453 (1961).

Owyoung, A.

P. Esherick, A. Owyoung, “Polarization Feedback Stabilization of an Injection-Seeded Nd:YAG Laser for Spectroscopic Applications,” J. Opt. Soc. Am. B 4, 41 (1987).
[CrossRef]

G. R. Hadley, J. P. Hohimer, A. Owyoung, “High-Order (ν > 10) Eigenmodes in Ten-Stripe Gain-Guided Diode Laser Arrays,” Appl. Phys. Lett. 49, 684 (1986).
[CrossRef]

A. Owyoung, G. R. Hadley, P. Esherick, R. L. Schmitt, L. A. Rahn, “Gain Switching of a Monolithic Single-Frequency Laser-Diode-Excited Nd:YAG Laser,” Opt. Lett. 10, 484 (1985).
[CrossRef] [PubMed]

A. Owyoung, P. Esherick, “Uses of Elastooptically Tuned Diode Laser-Excited Monolithic (Nd:YAG) Lasers,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), paper WN1.

Paoli, T. L.

R. L. Thornton, D. F. Welch, R. D. Burnham, T. L. Paoli, P. S. Cross, High Power (2.1 W) 10-Stripe AlGaAs Laser Arrays with Si Disordered Facet Windows,” Appl. Phys. Lett. 49, 1572 (1986).
[CrossRef]

Park, Y. K.

Rahn, L. A.

Rensch, D. B.

Schmitt, R. L.

Scifres, D. R.

C. Chang-Hasnain, D. P. Worland, D. R. Scifres, “High-Intensity Fibre-Coupled Diode Laser Array,” Electron. Lett. 22, 65 (1986).
[CrossRef]

Shakir, S. A.

Sipes, D. L.

D. L. Sipes, “Highly Efficient Neodymium: Yttrium Aluminum Garnet Laser End Pumped by a Semiconductor Laser Array,” Appl. Phys. Lett. 47, 74 (1985).
[CrossRef]

Thornton, R. L.

R. L. Thornton, D. F. Welch, R. D. Burnham, T. L. Paoli, P. S. Cross, High Power (2.1 W) 10-Stripe AlGaAs Laser Arrays with Si Disordered Facet Windows,” Appl. Phys. Lett. 49, 1572 (1986).
[CrossRef]

Welch, D. F.

R. L. Thornton, D. F. Welch, R. D. Burnham, T. L. Paoli, P. S. Cross, High Power (2.1 W) 10-Stripe AlGaAs Laser Arrays with Si Disordered Facet Windows,” Appl. Phys. Lett. 49, 1572 (1986).
[CrossRef]

Worland, D. P.

C. Chang-Hasnain, D. P. Worland, D. R. Scifres, “High-Intensity Fibre-Coupled Diode Laser Array,” Electron. Lett. 22, 65 (1986).
[CrossRef]

Zhou, B.

Appl. Opt. (3)

Appl. Phys. Lett. (3)

G. R. Hadley, J. P. Hohimer, A. Owyoung, “High-Order (ν > 10) Eigenmodes in Ten-Stripe Gain-Guided Diode Laser Arrays,” Appl. Phys. Lett. 49, 684 (1986).
[CrossRef]

R. L. Thornton, D. F. Welch, R. D. Burnham, T. L. Paoli, P. S. Cross, High Power (2.1 W) 10-Stripe AlGaAs Laser Arrays with Si Disordered Facet Windows,” Appl. Phys. Lett. 49, 1572 (1986).
[CrossRef]

D. L. Sipes, “Highly Efficient Neodymium: Yttrium Aluminum Garnet Laser End Pumped by a Semiconductor Laser Array,” Appl. Phys. Lett. 47, 74 (1985).
[CrossRef]

Bell Syst. Tech. J. (1)

A. G. Fox, T. Li, “Resonant Modes in a Maser Interferometer,” Bell Syst. Tech. J. 40, 453 (1961).

Electron. Lett. (1)

C. Chang-Hasnain, D. P. Worland, D. R. Scifres, “High-Intensity Fibre-Coupled Diode Laser Array,” Electron. Lett. 22, 65 (1986).
[CrossRef]

J. Appl. Phys. (1)

G. P. Agrawal, “Fast-Fourier-Transform Based Beam-Propagation Model for Stripe-Geometry Lasers: Inclusion of Axial Effects,” J. Appl. Phys. 56, 3100 (1984).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Other (3)

Schott Glass Technologies Inc., 400 York Ave., Duryea, PA 18642.

A. Owyoung, P. Esherick, “Uses of Elastooptically Tuned Diode Laser-Excited Monolithic (Nd:YAG) Lasers,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), paper WN1.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, (1976), p. 54.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Emission spectrum of the diode laser array and absorption spectrum of the Nd:YAG rod (normalized for 1% doping).

Fig. 2
Fig. 2

(a) Diode laser array spike pulse (upper trace) and the resulting Nd:YAG oscillator output pulse (lower trace, 1 div = 200 ns); (b) 50 consecutive Nd:YAG output pulses (1 div = 50 ns).

Fig. 3
Fig. 3

Calculational procedure for numerical simulation of miniature rod (a) oscillators and (b) amplifiers.

Fig. 4
Fig. 4

Predicted output pulse shape for the Nd:YAG oscillator (FWHM is 75 ns).

Fig. 5
Fig. 5

Peak output powers and pulse widths for the Nd:YAG oscillator at various spike powers. Experimental data are shown as discreet points, predictions from the numerical model as the solid curves. The dashed curve represents predicted output powers obtained using an artificially small value of the lower laser level lifetime (1 ns) to remove effects due to filling of this level.

Fig. 6
Fig. 6

Optimum output coupling vs pump power for the glass amplifier.

Fig. 7
Fig. 7

Predicted peak output power vs input power for the glass amplifier at different pump power levels.

Tables (2)

Tables Icon

Table I YAG Parameters

Tables Icon

Table II Nd:Glass Parameters

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E z = i 2 k ( 2 E r 2 + 1 r E r ) + g E
g = σ a N g 2
g = σ s 2 ( N u N l ) s 2
E ( r , L ) = E ( r , L ) R 2 exp ( i k r 2 2 f 2 ) ,
E ( r , 0 ) = R 1 E ( r , 0 ) exp ( i k r 2 2 f 1 ) + n ( 1 R 1 ) A ( r ) ,
E o u t ( r , 0 ) = 1 R 1 n E ( r , 0 ) R 1 A ( r )
N u t = σ a I p N g f hb ћ ω p N u τ sp σ s L s ћ ω s ( N u N l ) ,
N l t = σ s I s ћ ω s ( N u N l ) N l τ l + N u τ sp .
E k = ( α g + 1 α ) k E 0 .
E N = g N E 0 .
E N = ( α g + 1 α ) k g N E k .
d N d t = A N + a ,
N = ( N u N l ) .
N ( t + Δ t ) = A 1 a + c + N + exp ( λ + Δ t ) + c N exp ( λ Δ t ) ,

Metrics