Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. C. Chang (Insert I.), “Noncollinear Acousto-Optic Filter with Large Angular Aperture,” Appl. Phys. Lett. 25, 370 (1974).
    [CrossRef]
  2. H. Lee, “Acoustooptic Light Modulation with Large Bandwidth and Angular Aperture,” IEEE Trans. UFFC-34, 485 (1987).
  3. A. W. Lohmann, “Polarization and Optical Logic,” Appl. Opt. 25, 1594 (1986).
    [CrossRef] [PubMed]
  4. I. C. Chang, “Analysis of the Noncollinear Acousto-Optic Filter,” Electron. Lett. 11, 617 (1975).
    [CrossRef]

1987 (1)

H. Lee, “Acoustooptic Light Modulation with Large Bandwidth and Angular Aperture,” IEEE Trans. UFFC-34, 485 (1987).

1986 (1)

1975 (1)

I. C. Chang, “Analysis of the Noncollinear Acousto-Optic Filter,” Electron. Lett. 11, 617 (1975).
[CrossRef]

1974 (1)

I. C. Chang (Insert I.), “Noncollinear Acousto-Optic Filter with Large Angular Aperture,” Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

Chang, I. C.

I. C. Chang, “Analysis of the Noncollinear Acousto-Optic Filter,” Electron. Lett. 11, 617 (1975).
[CrossRef]

I. C. Chang (Insert I.), “Noncollinear Acousto-Optic Filter with Large Angular Aperture,” Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

Lee, H.

H. Lee, “Acoustooptic Light Modulation with Large Bandwidth and Angular Aperture,” IEEE Trans. UFFC-34, 485 (1987).

Lohmann, A. W.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

I. C. Chang (Insert I.), “Noncollinear Acousto-Optic Filter with Large Angular Aperture,” Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

Electron. Lett. (1)

I. C. Chang, “Analysis of the Noncollinear Acousto-Optic Filter,” Electron. Lett. 11, 617 (1975).
[CrossRef]

IEEE Trans. UFFC-34 (1)

H. Lee, “Acoustooptic Light Modulation with Large Bandwidth and Angular Aperture,” IEEE Trans. UFFC-34, 485 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Wave vector diagram that illustrates the principle of maximizing angular aperture for an input polarization.

Fig. 2
Fig. 2

Wave vector diagram that yields large angular apertures for the two input polarizations.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

k x 2 + k y 2 = k 3 2 ,
( k x 2 / k 1 2 ) + ( k y 2 / k 2 2 ) = 1 ,
d k y / d k x = ( k 2 2 / k 1 2 ) cot θ ,
d k y / d k x = cot θ .
tan θ 1 = ( k 2 2 / k 1 2 ) tan θ ;
tan θ 2 = ( k 1 2 / k 2 2 ) tan θ .
k ( θ 1 ) cos θ 1 k 3 cos θ = k ( θ ) cos θ k 3 cos θ 2 ,
k ( θ 1 ) sin θ 1 k 3 sin θ = k ( θ ) sin θ k 3 sin θ 2 ,
cos θ 1 , 2 = [ 1 + ( n 2 , 1 / n 1 , 2 ) 4 tan 2 θ ] 1 / 2 ,
sin θ 1 , 2 = [ 1 + ( n 1 , 2 / n 2 , 1 ) cot 2 θ ] 1 / 2 .
k ( θ 1 ) cos θ 1 = k 1 ( 1 + ( n 2 2 / n 1 2 ) tan 2 θ ] 1 / 2 ;
k ( θ 1 ) sin θ 1 = k 2 [ 1 + ( n 1 2 / n 2 2 ) cot 2 ) θ ] 1 / 2 .
n 3 cos θ n 1 [ 1 + n 2 2 / n 1 2 ) tan 2 θ ] 1 / 2 = n 3 [ 1 + ( n 1 / n 2 ) 4 tan 2 θ ] 1 / 2 n 1 [ 1 + ( n 1 / n 2 ) 2 tan 2 θ ] 1 / 2
n 3 sin θ n 2 [ 1 + ( n 1 2 / n 2 2 ] cot 2 θ ] 1 / 2 = n 3 [ 1 + ( n 2 / n 1 ) 4 cot 2 θ ] 1 / 2 n 2 [ 1 + ( n 2 / n 1 ) 2 cot 2 θ ] 1 / 2 .

Metrics