Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Mack, D. P. McNutt, F. L. Roesler, R. Chabbal, “The PEPSIOS Purely Interferometric High-Resolution Scanning Spectrometer. I. The Pilot Model,” Appl. Opt. 2, 873 (1963).
  2. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High Spectral Resolution Lidar to Measure Optical Scattering Properties of Atmospheric Aerosols. 1: Theory and Instrumentation,” Appl. Opt. 22, 3716 (1983).
    [CrossRef] [PubMed]
  3. C. J. Grund, “Measurement of Cirrus Cloud Optical Properties by High Spectral Resolution Lidar,” Ph.D. Thesis, U. Wisconsin—Madison, Department of Meteorology (1987).
  4. J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, P. J. Tryon, “High Spectral Resolution Lidar to Measure Optical Scattering Properties of Atmospheric Aerosols. 2: Calibration and Data Analysis,” Appl. Opt. 22, 3725 (1983).
    [CrossRef] [PubMed]
  5. C. J. Grund, E. W. Eloranta, “Improvements in the High Resolution Lidar System,” in Abstracts of Papers, Twelfth International Lidar Conference (1984), p. 407.

1983 (2)

1963 (1)

Chabbal, R.

Eloranta, E. W.

Grund, C. J.

C. J. Grund, “Measurement of Cirrus Cloud Optical Properties by High Spectral Resolution Lidar,” Ph.D. Thesis, U. Wisconsin—Madison, Department of Meteorology (1987).

C. J. Grund, E. W. Eloranta, “Improvements in the High Resolution Lidar System,” in Abstracts of Papers, Twelfth International Lidar Conference (1984), p. 407.

Mack, J. E.

McNutt, D. P.

Roesler, F. L.

Shipley, S. T.

Sroga, J. T.

Tracy, D. H.

Tryon, P. J.

Weinman, J. A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

\dT as a function of operating pressure calculated from Eq. (8) for the case of fused silica spacers, N2 tuning gas, and an ambient temperature of 20°C. The indicated values are calculated for the CuCl2 laser wavelength of 510.6 nm. Operation at or near 452 hPa can substantially reduce etalon wavelength drift due to environmental temperature changes.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

k = 2 n σ cos ( Ө )
d / = d n / n .
n = 1 + ( n ref 1 ) ρ / ρ ref = 1 + ζ P / T ,
d n = ξ [ d P / T ( P / T 2 ) d T ] .
α d T = ξ [ d P / T ( P / T 2 ) d T ] ,
d P / d T = P / T α T / ξ .
P = α T 2 / ξ .
d λ / d T = λ ( α ξ P / T 2 ) ,

Metrics