Abstract

The objective of this work is to study the effects of ambient temperature, atmospheric condition, and particle size on the extinction coefficient of diesel fuel and fog oil smoke. A first-order closure model is used to describe the turbulent diffusion of the smoke in the atmospheric surface layer. Mean values of wind speed and diffusivity in the vertical direction are obtained by the use of the Monin-Obukhov similarity theory. The 2-D crosswind line source model also includes the aerosol kinetic processes of evaporation, sedimentation, and deposition. Numerical results are obtained from simulations on a supercomputer.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Kaimal, J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, C. J. Readings, “Turbulence Structure in the Convective Layer,” J. Atmos. Sci. 33, 2152 (1976).
    [CrossRef]
  2. G. K. Yue, A. Deepak, “Modeling of Coagulation Sedimentation Effects on Transmission of Visible/IR Laser Beams in Aerosol Media,” Appl. Opt. 18, 3918 (1979).
    [CrossRef] [PubMed]
  3. G. K. Yue, A. Deepak, “Modeling of Growth, Evaporation and Sedimentation Effect on Transmission of Visible and IR Laser Beams in Artificial Fogs,” Appl. Opt. 19, 3767 (1980).
    [CrossRef] [PubMed]
  4. J. R. Brock, “Processes, Sources and Particle Size Distributions,” in Fogs and Smokes, Faraday Symposium 7 (Chemical Society, London, 1973).
  5. C. Donaldson, “Construction of a Dynamic Model of the Production of Atmospheric Turbulence and the Dispersal of Atmospheric Pollutants,” in Workshop on Micrometeorology, D. A. Haugens, Ed. (American Meteorological Society, Boston, 1973).
  6. J. C. Wyngaard, Ed., “Large-Eddy Simulation,” DTIC, AD-A146381 (1984).
  7. T. H. Tsang, J. R. Brock, “Aerosol Coagulation in the Plume from a Cross-Wind Line Source,” Atmos. Environ. 16, 2229 (1982).
    [CrossRef]
  8. T. H. Tsang, J. R. Brock, “Effect of Coagulation on Extinction in an Aerosol Plume Propagating in the Atmosphere,” Appl. Opt. 21, 1588 (1982).
    [CrossRef] [PubMed]
  9. T. H. Tsang, J. R. Brock, “Dispersion of a Plume of Volatile Aerosol,” Aerosol Sci. Technol. 2, 429 (1983).
    [CrossRef]
  10. G. A. Sehmel, “Particle and Gas Dry Deposition: A Review,” Atmos. Environ. 14, 983 (1980).
    [CrossRef]
  11. N. A. Fuchs, A. G. Sutugin, “High-Dispersed Aerosols,” in Topics in Current Aerosol Research, Vol. 2 (Pergamon, Oxford, 1971).
  12. C. F. Bohrin, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  13. R. G. Lamb, “A Numerical Simulation of Dispersion from an Elevated Point Source in the Convective Planetary Boundary Layer,” Atmos. Environ. 12, 1297 (1978).
    [CrossRef]
  14. H. A. Panofsky, “The Atmospheric Boundary Layer Below 150 Meters,” Ann. Rev. Fluid Mech. 6, 147 (1974).
    [CrossRef]
  15. F. B. Smith, “Turbulence in the Atmospheric Boundary Layer,” Sci. Prog. Oxford 62, 127 (1975).
  16. J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux-Profile Relationships in the Atmospheric Surface Layer,” J. Atmos. Sci. 28, 181 (1971).
    [CrossRef]
  17. C. A. Paulson, “The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer,” J. Appl. Meteorol. 9, 857 (1970).
    [CrossRef]
  18. E. L. Deacon, “Vertical Diffusion in the Lowest Layer of the Atmosphere,” Q.J. R. Meteorol. Soc. 75, 89 (1949).
    [CrossRef]
  19. S. J. Caughey, J. C. Wyngaard, K. C. Kaimal, “Turbulence in the Evolving Stable Boundary Layer,” J. Atmos. Sci. 16, 1041 (1979).
  20. A. P. Van Ulden, “Simple Estimates for Vertical Diffusion from Sources Near the Ground,” Atmos Environ. 12, 2125 (1978).
    [CrossRef]
  21. D. Golder, “Relations Among Stability Parameters in the Surface Layer,” Boundary Layer Meteorol. 3, 47 (1972).
    [CrossRef]
  22. F. A. Gifford, “Turbulent Diffusion-Typing Schemes: A Review,” Nucl. Safety 17, 68 (1976).
  23. F. T. M. Nieuwstadt, A. P. Van Ulden, “A Numerical Study on the Vertical Dispersion of Passive Contaminents from a Continuous Source in the Atmospheric Surface Layer,” Atmos. Environ. 12, 2119 (1978).
    [CrossRef]
  24. S. R. Hanna, “Application in Air Pollution Modeling,” in Atmospheric Turbulence and Air Pollution Modelling, F. T. M. Nieuwstadt, H. Van Dop, Eds. (Reidel, Dordrecht, 1982).
  25. J. W. Deardorff, G. E. Willis, “A Parametrization of Diffusion into the Mixed Layer,” J. Appl. Meteorol. 14, 1451 (1975).
    [CrossRef]
  26. T. H. Tsang, J. R. Brock, “Simulation of Condensation Aerosol Growth by Condensation and Evaporation,” Aerosol Sci. Technol. 2, 311 (1983).
  27. T. H. Tsang, N. Korgaonkar, “Effect of Evaporatin on the Extinction Coefficient of an Aerosol Cloud,” Aerosol Sci. Technol. (in press) 7, (1987).
  28. P. K. Smolarkiewicz, “A Fully Multidimensional Positive Definite Advection Transport Algorithm with Small Implicit Diffusion,” J. Comp. Phys. 54, 325 (1984).
    [CrossRef]

1984 (1)

P. K. Smolarkiewicz, “A Fully Multidimensional Positive Definite Advection Transport Algorithm with Small Implicit Diffusion,” J. Comp. Phys. 54, 325 (1984).
[CrossRef]

1983 (2)

T. H. Tsang, J. R. Brock, “Simulation of Condensation Aerosol Growth by Condensation and Evaporation,” Aerosol Sci. Technol. 2, 311 (1983).

T. H. Tsang, J. R. Brock, “Dispersion of a Plume of Volatile Aerosol,” Aerosol Sci. Technol. 2, 429 (1983).
[CrossRef]

1982 (2)

T. H. Tsang, J. R. Brock, “Aerosol Coagulation in the Plume from a Cross-Wind Line Source,” Atmos. Environ. 16, 2229 (1982).
[CrossRef]

T. H. Tsang, J. R. Brock, “Effect of Coagulation on Extinction in an Aerosol Plume Propagating in the Atmosphere,” Appl. Opt. 21, 1588 (1982).
[CrossRef] [PubMed]

1980 (2)

1979 (2)

S. J. Caughey, J. C. Wyngaard, K. C. Kaimal, “Turbulence in the Evolving Stable Boundary Layer,” J. Atmos. Sci. 16, 1041 (1979).

G. K. Yue, A. Deepak, “Modeling of Coagulation Sedimentation Effects on Transmission of Visible/IR Laser Beams in Aerosol Media,” Appl. Opt. 18, 3918 (1979).
[CrossRef] [PubMed]

1978 (3)

R. G. Lamb, “A Numerical Simulation of Dispersion from an Elevated Point Source in the Convective Planetary Boundary Layer,” Atmos. Environ. 12, 1297 (1978).
[CrossRef]

A. P. Van Ulden, “Simple Estimates for Vertical Diffusion from Sources Near the Ground,” Atmos Environ. 12, 2125 (1978).
[CrossRef]

F. T. M. Nieuwstadt, A. P. Van Ulden, “A Numerical Study on the Vertical Dispersion of Passive Contaminents from a Continuous Source in the Atmospheric Surface Layer,” Atmos. Environ. 12, 2119 (1978).
[CrossRef]

1976 (2)

F. A. Gifford, “Turbulent Diffusion-Typing Schemes: A Review,” Nucl. Safety 17, 68 (1976).

J. C. Kaimal, J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, C. J. Readings, “Turbulence Structure in the Convective Layer,” J. Atmos. Sci. 33, 2152 (1976).
[CrossRef]

1975 (2)

F. B. Smith, “Turbulence in the Atmospheric Boundary Layer,” Sci. Prog. Oxford 62, 127 (1975).

J. W. Deardorff, G. E. Willis, “A Parametrization of Diffusion into the Mixed Layer,” J. Appl. Meteorol. 14, 1451 (1975).
[CrossRef]

1974 (1)

H. A. Panofsky, “The Atmospheric Boundary Layer Below 150 Meters,” Ann. Rev. Fluid Mech. 6, 147 (1974).
[CrossRef]

1972 (1)

D. Golder, “Relations Among Stability Parameters in the Surface Layer,” Boundary Layer Meteorol. 3, 47 (1972).
[CrossRef]

1971 (1)

J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux-Profile Relationships in the Atmospheric Surface Layer,” J. Atmos. Sci. 28, 181 (1971).
[CrossRef]

1970 (1)

C. A. Paulson, “The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer,” J. Appl. Meteorol. 9, 857 (1970).
[CrossRef]

1949 (1)

E. L. Deacon, “Vertical Diffusion in the Lowest Layer of the Atmosphere,” Q.J. R. Meteorol. Soc. 75, 89 (1949).
[CrossRef]

Bohrin, C. F.

C. F. Bohrin, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Bradley, E. F.

J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux-Profile Relationships in the Atmospheric Surface Layer,” J. Atmos. Sci. 28, 181 (1971).
[CrossRef]

Brock, J. R.

T. H. Tsang, J. R. Brock, “Dispersion of a Plume of Volatile Aerosol,” Aerosol Sci. Technol. 2, 429 (1983).
[CrossRef]

T. H. Tsang, J. R. Brock, “Simulation of Condensation Aerosol Growth by Condensation and Evaporation,” Aerosol Sci. Technol. 2, 311 (1983).

T. H. Tsang, J. R. Brock, “Aerosol Coagulation in the Plume from a Cross-Wind Line Source,” Atmos. Environ. 16, 2229 (1982).
[CrossRef]

T. H. Tsang, J. R. Brock, “Effect of Coagulation on Extinction in an Aerosol Plume Propagating in the Atmosphere,” Appl. Opt. 21, 1588 (1982).
[CrossRef] [PubMed]

J. R. Brock, “Processes, Sources and Particle Size Distributions,” in Fogs and Smokes, Faraday Symposium 7 (Chemical Society, London, 1973).

Businger, J. A.

J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux-Profile Relationships in the Atmospheric Surface Layer,” J. Atmos. Sci. 28, 181 (1971).
[CrossRef]

Caughey, S. J.

S. J. Caughey, J. C. Wyngaard, K. C. Kaimal, “Turbulence in the Evolving Stable Boundary Layer,” J. Atmos. Sci. 16, 1041 (1979).

J. C. Kaimal, J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, C. J. Readings, “Turbulence Structure in the Convective Layer,” J. Atmos. Sci. 33, 2152 (1976).
[CrossRef]

Cote, O. R.

J. C. Kaimal, J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, C. J. Readings, “Turbulence Structure in the Convective Layer,” J. Atmos. Sci. 33, 2152 (1976).
[CrossRef]

Deacon, E. L.

E. L. Deacon, “Vertical Diffusion in the Lowest Layer of the Atmosphere,” Q.J. R. Meteorol. Soc. 75, 89 (1949).
[CrossRef]

Deardorff, J. W.

J. W. Deardorff, G. E. Willis, “A Parametrization of Diffusion into the Mixed Layer,” J. Appl. Meteorol. 14, 1451 (1975).
[CrossRef]

Deepak, A.

Donaldson, C.

C. Donaldson, “Construction of a Dynamic Model of the Production of Atmospheric Turbulence and the Dispersal of Atmospheric Pollutants,” in Workshop on Micrometeorology, D. A. Haugens, Ed. (American Meteorological Society, Boston, 1973).

Fuchs, N. A.

N. A. Fuchs, A. G. Sutugin, “High-Dispersed Aerosols,” in Topics in Current Aerosol Research, Vol. 2 (Pergamon, Oxford, 1971).

Gifford, F. A.

F. A. Gifford, “Turbulent Diffusion-Typing Schemes: A Review,” Nucl. Safety 17, 68 (1976).

Golder, D.

D. Golder, “Relations Among Stability Parameters in the Surface Layer,” Boundary Layer Meteorol. 3, 47 (1972).
[CrossRef]

Hanna, S. R.

S. R. Hanna, “Application in Air Pollution Modeling,” in Atmospheric Turbulence and Air Pollution Modelling, F. T. M. Nieuwstadt, H. Van Dop, Eds. (Reidel, Dordrecht, 1982).

Haugen, D. A.

J. C. Kaimal, J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, C. J. Readings, “Turbulence Structure in the Convective Layer,” J. Atmos. Sci. 33, 2152 (1976).
[CrossRef]

Huffman, D. R.

C. F. Bohrin, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Izumi, Y.

J. C. Kaimal, J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, C. J. Readings, “Turbulence Structure in the Convective Layer,” J. Atmos. Sci. 33, 2152 (1976).
[CrossRef]

J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux-Profile Relationships in the Atmospheric Surface Layer,” J. Atmos. Sci. 28, 181 (1971).
[CrossRef]

Kaimal, J. C.

J. C. Kaimal, J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, C. J. Readings, “Turbulence Structure in the Convective Layer,” J. Atmos. Sci. 33, 2152 (1976).
[CrossRef]

Kaimal, K. C.

S. J. Caughey, J. C. Wyngaard, K. C. Kaimal, “Turbulence in the Evolving Stable Boundary Layer,” J. Atmos. Sci. 16, 1041 (1979).

Korgaonkar, N.

T. H. Tsang, N. Korgaonkar, “Effect of Evaporatin on the Extinction Coefficient of an Aerosol Cloud,” Aerosol Sci. Technol. (in press) 7, (1987).

Lamb, R. G.

R. G. Lamb, “A Numerical Simulation of Dispersion from an Elevated Point Source in the Convective Planetary Boundary Layer,” Atmos. Environ. 12, 1297 (1978).
[CrossRef]

Nieuwstadt, F. T. M.

F. T. M. Nieuwstadt, A. P. Van Ulden, “A Numerical Study on the Vertical Dispersion of Passive Contaminents from a Continuous Source in the Atmospheric Surface Layer,” Atmos. Environ. 12, 2119 (1978).
[CrossRef]

Panofsky, H. A.

H. A. Panofsky, “The Atmospheric Boundary Layer Below 150 Meters,” Ann. Rev. Fluid Mech. 6, 147 (1974).
[CrossRef]

Paulson, C. A.

C. A. Paulson, “The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer,” J. Appl. Meteorol. 9, 857 (1970).
[CrossRef]

Readings, C. J.

J. C. Kaimal, J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, C. J. Readings, “Turbulence Structure in the Convective Layer,” J. Atmos. Sci. 33, 2152 (1976).
[CrossRef]

Sehmel, G. A.

G. A. Sehmel, “Particle and Gas Dry Deposition: A Review,” Atmos. Environ. 14, 983 (1980).
[CrossRef]

Smith, F. B.

F. B. Smith, “Turbulence in the Atmospheric Boundary Layer,” Sci. Prog. Oxford 62, 127 (1975).

Smolarkiewicz, P. K.

P. K. Smolarkiewicz, “A Fully Multidimensional Positive Definite Advection Transport Algorithm with Small Implicit Diffusion,” J. Comp. Phys. 54, 325 (1984).
[CrossRef]

Sutugin, A. G.

N. A. Fuchs, A. G. Sutugin, “High-Dispersed Aerosols,” in Topics in Current Aerosol Research, Vol. 2 (Pergamon, Oxford, 1971).

Tsang, T. H.

T. H. Tsang, J. R. Brock, “Dispersion of a Plume of Volatile Aerosol,” Aerosol Sci. Technol. 2, 429 (1983).
[CrossRef]

T. H. Tsang, J. R. Brock, “Simulation of Condensation Aerosol Growth by Condensation and Evaporation,” Aerosol Sci. Technol. 2, 311 (1983).

T. H. Tsang, J. R. Brock, “Effect of Coagulation on Extinction in an Aerosol Plume Propagating in the Atmosphere,” Appl. Opt. 21, 1588 (1982).
[CrossRef] [PubMed]

T. H. Tsang, J. R. Brock, “Aerosol Coagulation in the Plume from a Cross-Wind Line Source,” Atmos. Environ. 16, 2229 (1982).
[CrossRef]

T. H. Tsang, N. Korgaonkar, “Effect of Evaporatin on the Extinction Coefficient of an Aerosol Cloud,” Aerosol Sci. Technol. (in press) 7, (1987).

Van Ulden, A. P.

F. T. M. Nieuwstadt, A. P. Van Ulden, “A Numerical Study on the Vertical Dispersion of Passive Contaminents from a Continuous Source in the Atmospheric Surface Layer,” Atmos. Environ. 12, 2119 (1978).
[CrossRef]

A. P. Van Ulden, “Simple Estimates for Vertical Diffusion from Sources Near the Ground,” Atmos Environ. 12, 2125 (1978).
[CrossRef]

Willis, G. E.

J. W. Deardorff, G. E. Willis, “A Parametrization of Diffusion into the Mixed Layer,” J. Appl. Meteorol. 14, 1451 (1975).
[CrossRef]

Wyngaard, J. C.

S. J. Caughey, J. C. Wyngaard, K. C. Kaimal, “Turbulence in the Evolving Stable Boundary Layer,” J. Atmos. Sci. 16, 1041 (1979).

J. C. Kaimal, J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, C. J. Readings, “Turbulence Structure in the Convective Layer,” J. Atmos. Sci. 33, 2152 (1976).
[CrossRef]

J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux-Profile Relationships in the Atmospheric Surface Layer,” J. Atmos. Sci. 28, 181 (1971).
[CrossRef]

Yue, G. K.

Aerosol Sci. Technol. (2)

T. H. Tsang, J. R. Brock, “Dispersion of a Plume of Volatile Aerosol,” Aerosol Sci. Technol. 2, 429 (1983).
[CrossRef]

T. H. Tsang, J. R. Brock, “Simulation of Condensation Aerosol Growth by Condensation and Evaporation,” Aerosol Sci. Technol. 2, 311 (1983).

Ann. Rev. Fluid Mech. (1)

H. A. Panofsky, “The Atmospheric Boundary Layer Below 150 Meters,” Ann. Rev. Fluid Mech. 6, 147 (1974).
[CrossRef]

Appl. Opt. (3)

Atmos Environ. (1)

A. P. Van Ulden, “Simple Estimates for Vertical Diffusion from Sources Near the Ground,” Atmos Environ. 12, 2125 (1978).
[CrossRef]

Atmos. Environ. (4)

F. T. M. Nieuwstadt, A. P. Van Ulden, “A Numerical Study on the Vertical Dispersion of Passive Contaminents from a Continuous Source in the Atmospheric Surface Layer,” Atmos. Environ. 12, 2119 (1978).
[CrossRef]

G. A. Sehmel, “Particle and Gas Dry Deposition: A Review,” Atmos. Environ. 14, 983 (1980).
[CrossRef]

R. G. Lamb, “A Numerical Simulation of Dispersion from an Elevated Point Source in the Convective Planetary Boundary Layer,” Atmos. Environ. 12, 1297 (1978).
[CrossRef]

T. H. Tsang, J. R. Brock, “Aerosol Coagulation in the Plume from a Cross-Wind Line Source,” Atmos. Environ. 16, 2229 (1982).
[CrossRef]

Boundary Layer Meteorol. (1)

D. Golder, “Relations Among Stability Parameters in the Surface Layer,” Boundary Layer Meteorol. 3, 47 (1972).
[CrossRef]

J. Appl. Meteorol. (2)

J. W. Deardorff, G. E. Willis, “A Parametrization of Diffusion into the Mixed Layer,” J. Appl. Meteorol. 14, 1451 (1975).
[CrossRef]

C. A. Paulson, “The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer,” J. Appl. Meteorol. 9, 857 (1970).
[CrossRef]

J. Atmos. Sci. (3)

J. C. Kaimal, J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, C. J. Readings, “Turbulence Structure in the Convective Layer,” J. Atmos. Sci. 33, 2152 (1976).
[CrossRef]

J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux-Profile Relationships in the Atmospheric Surface Layer,” J. Atmos. Sci. 28, 181 (1971).
[CrossRef]

S. J. Caughey, J. C. Wyngaard, K. C. Kaimal, “Turbulence in the Evolving Stable Boundary Layer,” J. Atmos. Sci. 16, 1041 (1979).

J. Comp. Phys. (1)

P. K. Smolarkiewicz, “A Fully Multidimensional Positive Definite Advection Transport Algorithm with Small Implicit Diffusion,” J. Comp. Phys. 54, 325 (1984).
[CrossRef]

Nucl. Safety (1)

F. A. Gifford, “Turbulent Diffusion-Typing Schemes: A Review,” Nucl. Safety 17, 68 (1976).

Q.J. R. Meteorol. Soc. (1)

E. L. Deacon, “Vertical Diffusion in the Lowest Layer of the Atmosphere,” Q.J. R. Meteorol. Soc. 75, 89 (1949).
[CrossRef]

Sci. Prog. Oxford (1)

F. B. Smith, “Turbulence in the Atmospheric Boundary Layer,” Sci. Prog. Oxford 62, 127 (1975).

Other (7)

N. A. Fuchs, A. G. Sutugin, “High-Dispersed Aerosols,” in Topics in Current Aerosol Research, Vol. 2 (Pergamon, Oxford, 1971).

C. F. Bohrin, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

J. R. Brock, “Processes, Sources and Particle Size Distributions,” in Fogs and Smokes, Faraday Symposium 7 (Chemical Society, London, 1973).

C. Donaldson, “Construction of a Dynamic Model of the Production of Atmospheric Turbulence and the Dispersal of Atmospheric Pollutants,” in Workshop on Micrometeorology, D. A. Haugens, Ed. (American Meteorological Society, Boston, 1973).

J. C. Wyngaard, Ed., “Large-Eddy Simulation,” DTIC, AD-A146381 (1984).

S. R. Hanna, “Application in Air Pollution Modeling,” in Atmospheric Turbulence and Air Pollution Modelling, F. T. M. Nieuwstadt, H. Van Dop, Eds. (Reidel, Dordrecht, 1982).

T. H. Tsang, N. Korgaonkar, “Effect of Evaporatin on the Extinction Coefficient of an Aerosol Cloud,” Aerosol Sci. Technol. (in press) 7, (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Isopleths of total extinction coefficients σext in a plume of fog oil aerosol at (15.5°C) and stability class D. The initial mean particle diameter is 0.5 μm. The wavelength of irradiation is 0.5 μm. σext in cm−1 are equal to the values given on isopleths times 5 × 10−5.

Fig. 2
Fig. 2

Isopleths of total extinction coefficient σext in a plume of fog oil aerosol at (15.5°C) and stability class D. The initial mean particle diameter is 0.5 μm. The wavelength of irradiation is 3.0 μm. σext in cm−1 are equal to the values given on isopleths times 5 × 10−6.

Fig. 3
Fig. 3

Isopleths of total extinction coefficient σext in a plume of fog oil aerosol at (15.5°C) and stability class D. The initial mean particle diameter is 2.0 μm. The wavelength of irradiation is 0.5 μm. σext in cm−1 are equal to the values given on isopleths times 5 × 10−5

Fig. 4
Fig. 4

Isopleths of total extinction coefficient σext in a plume of fog oil aerosol at (15.5°C) and stability class D. The initial mean particle diameter is 2.0 μm. The wavelength of irradiation is 3.0 μm. σext in cm−1 are equal to the values given on isopleths times 5 × 10−6.

Fig. 5
Fig. 5

Isopleths of total extinction coefficient σext in a plume of fog oil aerosol at (26.6°C) and stability class B. The initial mean particle diameter is 0.5 μm. The wavelength of irradiation is 0.5 μm. σext in cm−1 are equal to the values given on isopleths times 5 × 10−5.

Fig. 6
Fig. 6

Isopleths of total extinction coefficient σext in a plume of fog oil aerosol at (26.6°C) and stability class B. The initial mean particle diameter is 0.5 μm. The wavelength of irradiation is 3.0 μm. σext in cm−1 are equal to the values given on isopleths times 5 × 10−6.

Tables (1)

Tables Icon

Table I Physical Properties of Fog Oil and Diesel Fuel

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

u ( Z ) n x + m [ ψ n ] = Z [ K ( Z ) n Z ] + G Z ( m ) n Z ,
u ( Z ) s x = Z [ K ( Z ) s Z ] 1 C υ 0 ψ n d m .
n = Q 0 u ( h ) δ ( Z h ) n 0 ( m ) at x = 0 ,
s = 1 . 0 at x = 0 and Z = h ,
n Z = s Z = 0 at Z = H ,
n V d = K s n Z at Z = 0 ,
s Z = 0 at Z = 0 .
ψ ( m , s ) = 4 π ( 3 / 4 π ρ p ) 1 / 3 × D g j m 1 / 3 C υ [ s exp ( K e ) ] × ( 1 + 1 . 33 Kn + 0 . 71 1 + Kn 1 ) 1 ,
N ( x , Z ) = 0 n ( m , x , Z ) d m ,
M ( x , Z ) = 0 m n ( m , x , Z ) d m ;
σ ext ( p , m , λ , x , Z ) = π ( 3 4 π ρ p ) 2 / 3 ξ ext ( p , m , λ ) m 2 / 3 n ( m , x , Z ) d m ,
ϕ m = k ¯ Z u * u Z ,
ϕ m = ( 1 15 ξ ) ( 1 / 4 ) ϕ h = 0 . 74 ( 1 9 ξ ) ( 1 / 2 ) ξ < 0 u n s t a b l e c o n d i t i o n
ϕ m = 1 + 4 . 7 ξ ϕ h = 0 . 74 + 4 . 7 ξ ξ > 0 s t a b l e c o n d i t i o n
ϕ h = k ¯ Z θ * θ ¯ Z ,
K h = k ¯ u * Z ϕ h .
u ( Z ) u * = 1 k ¯ [ ln ( Z Z 0 ) ψ 1 ] ξ < 0 u n s t a b l e c o n d i t i o n ,
u ( Z ) u * = 1 k ¯ [ ln ( Z Z 0 ) + 4 . 7 ξ ] ξ > 0 s t a b l e c o n d i t i o n .
K ( Z ) = k ¯ u * Z 0 . 74 [ 1 9 ( Z + Z 0 ) L ] 0 . 5 ξ < 0 u n s t a b l e c o n d i t i o n .
K ( Z ) = k ¯ u * Z 0 . 74 + 4 . 7 ( Z + Z 0 ) / L ξ > 0 s t a b l e c o n d i t i o n .

Metrics