Abstract

Nonlinear effects on the propagation of a high power pulsed laser beam through the earth’s atmosphere are modeled. Stimulated Raman scattering in relatively modest power laser beams is estimated to be very significant when extremely long path lengths are considered. Whole beam self-focusing may also seriously affect beam propagation. The observation of these phenomena is likely to be enhanced by wavefront compensation techniques to remove linear refractive-index atmospheric effects such as beam steering and scintillation. Examples of space to ground and ground to space beam propagation are presented.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See V. E. Zuev, Laser Beams in the Atmosphere [Consultants Bureau (Plenum), New York, 1982], and the references contained therein.
    [CrossRef]
  2. See, for example, F. G. Gebhardt, “High Power Laser Propagation,” Appl. Opt. 15, 1479 (1976).
    [CrossRef] [PubMed]
  3. J. A. Fleck, J. R. Morris, M. D. Feit, “Time-Dependent Propagation of High Energy Laser Beams Through the Atmosphere,” Appl. Phys. 10, 129 (1976).
    [CrossRef]
  4. R. L. Armstrong, S. A. W. Genstl, A. Zardecki, “Nonlinear Pulse Propagation in the Presence of Evaporating Aerosols,” J. Opt. Soc. Am. A 2, 1739 (1985).
    [CrossRef]
  5. See, for example, S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov, “Self-Focusing, Self-Defocusing and Self-Modulation of Laser Beams,” in Laser Handbook. Vol. 1, F. T. Arecchi, E. O. Shulz Dubois, Eds. (North-Holland, Amsterdam, 1972).
  6. G. C. Herring, M. J. Dyer, W. K. Bischel, “Temperature and Wavelength Dependence of the Rotational Raman Gain Coefficient in N2,” Opt. Lett. 11, 348 (1986).
    [CrossRef] [PubMed]
  7. M. Rokni, A. Flusberg, “Simulated Rotational Raman Scattering in the Atmosphere,” IEEE J. Quantum Electron. QE-22, 1102 (1986).
    [CrossRef]
  8. M. A. Henesian, C. D. Swift, J. R. Murray, “Stimulated Rotational Raman Scattering in Nitrogen in Long Air Paths,” Opt. Lett. 10, 565 (1985).
    [CrossRef] [PubMed]
  9. F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer Code lowtran 6,” AFGL-TR-83-0187, 1Aug.1983 (Air Force Geophysics Laboratory, Hanscom AFB, MA 01731).
  10. U.S. Standard Atmosphere, 1976, NOAA S/T 76-1562, Washington, D.C.
  11. M. J. McEwan, L. F. Phillips, Chemistry of the Atmosphere (Wiley, New York, 1975).
  12. R. D. Hudson, “Critical Review of Photoabsorption Cross Sections,” NSRDS-NBS38 (1971)
  13. D. V. Vlasov, R. A. Garaev, V. V. Korobin, R. S. Serov, “Measurement of Nonlinear Polarisability of Air,” Sov. Phys. JETP 49, 1033 (1979).
  14. W. G. Rado, “The Nonlinear Third Order Dielectric Susceptibility Coefficients of Gases and Optical Third Harmonic Generation,” Appl. Phys. Lett. 11, 123 (1967).
    [CrossRef]
  15. L. V. Goryachev, F. V. Grigorev, V. V. Kalinovskii, S. B. Kormer, L. M. Lavrov, V. P. Chuding, “Self-Focusing of a Laser Beam as a whole in Air,” Sov. J. Quantum Electron. 7, 510 (1977).
    [CrossRef]
  16. J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman Pulse Compression of Excimer Lasers for Application to Laser Fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
    [CrossRef]
  17. J. M. Cherlow, T. T. Yang, R. W. Hellwarch, “Nonlinear Optical Susceptibilities of Solvents,” IEEE J. Quantum Electron. QE-13, 644 (1976).
    [CrossRef]
  18. V. I. Bespalov, V. I. Talanov, “Filamentary Structure of Light Beams in Nonlinear Liquids,” JETP Lett. 3, 307 (1966).
  19. J. A. Fleck, J. R. Morris, E. S. Bliss, “Small-Scale Self-Focusing Effects in a High Power Glass Laser System,” IEEE J. Quantum Electron. QE-14, 353 (1978).
    [CrossRef]
  20. J. F. Holzrichter, “High Power Solid State Lasers,” Nature London 316, 311 (1985).
    [CrossRef]
  21. D. C. Brown, “High Peak Power Nd-Glass Laser Systems,” Opt. Sci. 25, 188 (1981).
  22. P. Lallemand, “The Stimulated Raman Effect,” in The Raman Effect, Vol. 1, A. Anderson, Ed. (Dekker, New York, 1971).
  23. H. W. Schrother, H. W. Klochner, “Raman Scattering Cross Sections in Gases and Liquids,” A. Weber, Ed., in Raman Spectroscopy (Springer-Verlag, New York, 1979).
  24. H. A. Hyatt, J. M. Cherlow, W. R. Fenner, S. P. S. Porto, “Cross Section for the Raman Effect in Molecular Nitrogen Gas,” J. Opt. Soc. Am. 63, 1604 (1973).
    [CrossRef]
  25. W. R. Fenner, H. A. Hyatt, J. M. Kellam, S. P. S. Porto, “Raman Cross Section of Some Simple Gases,” J. Opt. Soc. Am. 63, 73 (1973).
    [CrossRef]
  26. A. Weber, “High Resolution Rotational Raman Spectra of Gases,” in Raman Spectroscopy, A. Weber, Ed. (Springer-Verlag, New York, 1979).
  27. V. S. Averbakh, A. I. Makarov, V. I. Talanov, “Stimulated Raman Scattering on Rotational and Vibrational Transitions in Nitrogen Gas,” Sov. J. Quantum Electron, 8, 472 (1978).
    [CrossRef]
  28. C. M. Penny, R. L. St. Peters, M. Lapp, “Absolute Rotational Raman Cross Sections for N2, O2, and CO2” J. Opt. Soc. Am. 64, 712 (1974).
    [CrossRef]
  29. I. I. Kondilenko, P. A. Korotov, V. A. Klimenko, N. G. Golubeva, “Absolute Raman Scattering Cross Sections of the Rotational Lines of Nitrogen and Oxygen,” Opt. Spectrosc. (USSR) 48, 411 (1980).
  30. G. I. Kachen, W. H. Lowdermilk, “Relaxation Oscillations in Stimulated Raman Scattering,” Phys. Rev. A 16, 1657 (1977).
    [CrossRef]
  31. E. E. Hagenlocker, R. W. Minch, W. G. Rado, “Effects of Phonon Lifetime on Stimulated Optical Scattering in Gases,” Phys. Rev. 154, 226 (1967)
    [CrossRef]
  32. W. K. Bischel, G. Black, “Wavelength Dependence of Raman Scattering Cross Sections from 200–600 nm,” in Excimer Lasers—1983, AIP Conf. Proc. 100, C. K. Rhodes, H. Egger, H. Pummer, Eds. (American Institute of Physics, New York, 1983).
  33. See, for example, R. H. Huddleston, S. L. Leonard, Eds., Plasma Diagnostic Techniques, (Academic, New York, 1965).
  34. W. K. Bischel, SRI International; private communication.
  35. W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, “Nonlinear Optical Processes in Atoms and Molecules Using Rare Gas Halide Lasers,” IEEE J. Quantum Electron. QE-15, 380 (1979).
    [CrossRef]
  36. W. E. Martin, G. J. Caporaso, W. M. Fawley, D. Prosnitz, A. G. Cole, “Electron-Beam Guiding and Phase-Mix Damping by a Laser Ionized Channel,” Phys. Rev. Lett. 54, 685 (1985).
    [CrossRef] [PubMed]
  37. A. Yariv, Introduction to Optical Electronics (Holt, Rinehart, & Wilson, New York, 1976), Chap. 3.
  38. J. P. Partanen, M. J. Shaw, “High Power Forward Raman Amplifiers Employing Low Pressure Gases in Lightguides, I Theory and Applications,” J. Opt. Soc. Am. B 3, 1374 (1986).
    [CrossRef]
  39. M. J. Shaw, J. P. Partanen, Y. Owadano, I. N. Ross, E. Hodgson, C. B. Edwards, F. O’Neill, “High-Power Forward Raman Amplifiers Employing Low-Pressure Gases in Light Guides. II. Experiments,” J. Opt. Soc. Am. B 3, 1466 (1986).
    [CrossRef]
  40. See I. P. Christov, I. V. Tomov, “Growth of Raman-Stokes Waves in Focused Pump Beams,” Opt. Quantum Electron. 17, 207 (1985).
    [CrossRef]
  41. P. A. Belanger, C. Pare, “Self-Focusing of Gaussian Beams: An Alternate Derivation,” Appl. Opt. 22, 1293 (1983).
    [CrossRef] [PubMed]

1986 (4)

1985 (5)

See I. P. Christov, I. V. Tomov, “Growth of Raman-Stokes Waves in Focused Pump Beams,” Opt. Quantum Electron. 17, 207 (1985).
[CrossRef]

W. E. Martin, G. J. Caporaso, W. M. Fawley, D. Prosnitz, A. G. Cole, “Electron-Beam Guiding and Phase-Mix Damping by a Laser Ionized Channel,” Phys. Rev. Lett. 54, 685 (1985).
[CrossRef] [PubMed]

M. A. Henesian, C. D. Swift, J. R. Murray, “Stimulated Rotational Raman Scattering in Nitrogen in Long Air Paths,” Opt. Lett. 10, 565 (1985).
[CrossRef] [PubMed]

R. L. Armstrong, S. A. W. Genstl, A. Zardecki, “Nonlinear Pulse Propagation in the Presence of Evaporating Aerosols,” J. Opt. Soc. Am. A 2, 1739 (1985).
[CrossRef]

J. F. Holzrichter, “High Power Solid State Lasers,” Nature London 316, 311 (1985).
[CrossRef]

1983 (1)

1981 (1)

D. C. Brown, “High Peak Power Nd-Glass Laser Systems,” Opt. Sci. 25, 188 (1981).

1980 (1)

I. I. Kondilenko, P. A. Korotov, V. A. Klimenko, N. G. Golubeva, “Absolute Raman Scattering Cross Sections of the Rotational Lines of Nitrogen and Oxygen,” Opt. Spectrosc. (USSR) 48, 411 (1980).

1979 (3)

W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, “Nonlinear Optical Processes in Atoms and Molecules Using Rare Gas Halide Lasers,” IEEE J. Quantum Electron. QE-15, 380 (1979).
[CrossRef]

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman Pulse Compression of Excimer Lasers for Application to Laser Fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

D. V. Vlasov, R. A. Garaev, V. V. Korobin, R. S. Serov, “Measurement of Nonlinear Polarisability of Air,” Sov. Phys. JETP 49, 1033 (1979).

1978 (2)

V. S. Averbakh, A. I. Makarov, V. I. Talanov, “Stimulated Raman Scattering on Rotational and Vibrational Transitions in Nitrogen Gas,” Sov. J. Quantum Electron, 8, 472 (1978).
[CrossRef]

J. A. Fleck, J. R. Morris, E. S. Bliss, “Small-Scale Self-Focusing Effects in a High Power Glass Laser System,” IEEE J. Quantum Electron. QE-14, 353 (1978).
[CrossRef]

1977 (2)

G. I. Kachen, W. H. Lowdermilk, “Relaxation Oscillations in Stimulated Raman Scattering,” Phys. Rev. A 16, 1657 (1977).
[CrossRef]

L. V. Goryachev, F. V. Grigorev, V. V. Kalinovskii, S. B. Kormer, L. M. Lavrov, V. P. Chuding, “Self-Focusing of a Laser Beam as a whole in Air,” Sov. J. Quantum Electron. 7, 510 (1977).
[CrossRef]

1976 (3)

See, for example, F. G. Gebhardt, “High Power Laser Propagation,” Appl. Opt. 15, 1479 (1976).
[CrossRef] [PubMed]

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-Dependent Propagation of High Energy Laser Beams Through the Atmosphere,” Appl. Phys. 10, 129 (1976).
[CrossRef]

J. M. Cherlow, T. T. Yang, R. W. Hellwarch, “Nonlinear Optical Susceptibilities of Solvents,” IEEE J. Quantum Electron. QE-13, 644 (1976).
[CrossRef]

1974 (1)

1973 (2)

1967 (2)

W. G. Rado, “The Nonlinear Third Order Dielectric Susceptibility Coefficients of Gases and Optical Third Harmonic Generation,” Appl. Phys. Lett. 11, 123 (1967).
[CrossRef]

E. E. Hagenlocker, R. W. Minch, W. G. Rado, “Effects of Phonon Lifetime on Stimulated Optical Scattering in Gases,” Phys. Rev. 154, 226 (1967)
[CrossRef]

1966 (1)

V. I. Bespalov, V. I. Talanov, “Filamentary Structure of Light Beams in Nonlinear Liquids,” JETP Lett. 3, 307 (1966).

Akhmanov, S. A.

See, for example, S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov, “Self-Focusing, Self-Defocusing and Self-Modulation of Laser Beams,” in Laser Handbook. Vol. 1, F. T. Arecchi, E. O. Shulz Dubois, Eds. (North-Holland, Amsterdam, 1972).

Armstrong, R. L.

Averbakh, V. S.

V. S. Averbakh, A. I. Makarov, V. I. Talanov, “Stimulated Raman Scattering on Rotational and Vibrational Transitions in Nitrogen Gas,” Sov. J. Quantum Electron, 8, 472 (1978).
[CrossRef]

Belanger, P. A.

Bespalov, V. I.

V. I. Bespalov, V. I. Talanov, “Filamentary Structure of Light Beams in Nonlinear Liquids,” JETP Lett. 3, 307 (1966).

Bischel, W. K.

G. C. Herring, M. J. Dyer, W. K. Bischel, “Temperature and Wavelength Dependence of the Rotational Raman Gain Coefficient in N2,” Opt. Lett. 11, 348 (1986).
[CrossRef] [PubMed]

W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, “Nonlinear Optical Processes in Atoms and Molecules Using Rare Gas Halide Lasers,” IEEE J. Quantum Electron. QE-15, 380 (1979).
[CrossRef]

W. K. Bischel, SRI International; private communication.

W. K. Bischel, G. Black, “Wavelength Dependence of Raman Scattering Cross Sections from 200–600 nm,” in Excimer Lasers—1983, AIP Conf. Proc. 100, C. K. Rhodes, H. Egger, H. Pummer, Eds. (American Institute of Physics, New York, 1983).

Black, G.

W. K. Bischel, G. Black, “Wavelength Dependence of Raman Scattering Cross Sections from 200–600 nm,” in Excimer Lasers—1983, AIP Conf. Proc. 100, C. K. Rhodes, H. Egger, H. Pummer, Eds. (American Institute of Physics, New York, 1983).

Bliss, E. S.

J. A. Fleck, J. R. Morris, E. S. Bliss, “Small-Scale Self-Focusing Effects in a High Power Glass Laser System,” IEEE J. Quantum Electron. QE-14, 353 (1978).
[CrossRef]

Bokor, J.

W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, “Nonlinear Optical Processes in Atoms and Molecules Using Rare Gas Halide Lasers,” IEEE J. Quantum Electron. QE-15, 380 (1979).
[CrossRef]

Brown, D. C.

D. C. Brown, “High Peak Power Nd-Glass Laser Systems,” Opt. Sci. 25, 188 (1981).

Caporaso, G. J.

W. E. Martin, G. J. Caporaso, W. M. Fawley, D. Prosnitz, A. G. Cole, “Electron-Beam Guiding and Phase-Mix Damping by a Laser Ionized Channel,” Phys. Rev. Lett. 54, 685 (1985).
[CrossRef] [PubMed]

Cherlow, J. M.

J. M. Cherlow, T. T. Yang, R. W. Hellwarch, “Nonlinear Optical Susceptibilities of Solvents,” IEEE J. Quantum Electron. QE-13, 644 (1976).
[CrossRef]

H. A. Hyatt, J. M. Cherlow, W. R. Fenner, S. P. S. Porto, “Cross Section for the Raman Effect in Molecular Nitrogen Gas,” J. Opt. Soc. Am. 63, 1604 (1973).
[CrossRef]

Christov, I. P.

See I. P. Christov, I. V. Tomov, “Growth of Raman-Stokes Waves in Focused Pump Beams,” Opt. Quantum Electron. 17, 207 (1985).
[CrossRef]

Chuding, V. P.

L. V. Goryachev, F. V. Grigorev, V. V. Kalinovskii, S. B. Kormer, L. M. Lavrov, V. P. Chuding, “Self-Focusing of a Laser Beam as a whole in Air,” Sov. J. Quantum Electron. 7, 510 (1977).
[CrossRef]

Cole, A. G.

W. E. Martin, G. J. Caporaso, W. M. Fawley, D. Prosnitz, A. G. Cole, “Electron-Beam Guiding and Phase-Mix Damping by a Laser Ionized Channel,” Phys. Rev. Lett. 54, 685 (1985).
[CrossRef] [PubMed]

Dyer, M. J.

Edwards, C. B.

Eimerl, D.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman Pulse Compression of Excimer Lasers for Application to Laser Fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

Fawley, W. M.

W. E. Martin, G. J. Caporaso, W. M. Fawley, D. Prosnitz, A. G. Cole, “Electron-Beam Guiding and Phase-Mix Damping by a Laser Ionized Channel,” Phys. Rev. Lett. 54, 685 (1985).
[CrossRef] [PubMed]

Feit, M. D.

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-Dependent Propagation of High Energy Laser Beams Through the Atmosphere,” Appl. Phys. 10, 129 (1976).
[CrossRef]

Fenner, W. R.

Fleck, J. A.

J. A. Fleck, J. R. Morris, E. S. Bliss, “Small-Scale Self-Focusing Effects in a High Power Glass Laser System,” IEEE J. Quantum Electron. QE-14, 353 (1978).
[CrossRef]

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-Dependent Propagation of High Energy Laser Beams Through the Atmosphere,” Appl. Phys. 10, 129 (1976).
[CrossRef]

Flusberg, A.

M. Rokni, A. Flusberg, “Simulated Rotational Raman Scattering in the Atmosphere,” IEEE J. Quantum Electron. QE-22, 1102 (1986).
[CrossRef]

Garaev, R. A.

D. V. Vlasov, R. A. Garaev, V. V. Korobin, R. S. Serov, “Measurement of Nonlinear Polarisability of Air,” Sov. Phys. JETP 49, 1033 (1979).

Gebhardt, F. G.

Genstl, S. A. W.

Goldhar, J.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman Pulse Compression of Excimer Lasers for Application to Laser Fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

Golubeva, N. G.

I. I. Kondilenko, P. A. Korotov, V. A. Klimenko, N. G. Golubeva, “Absolute Raman Scattering Cross Sections of the Rotational Lines of Nitrogen and Oxygen,” Opt. Spectrosc. (USSR) 48, 411 (1980).

Goryachev, L. V.

L. V. Goryachev, F. V. Grigorev, V. V. Kalinovskii, S. B. Kormer, L. M. Lavrov, V. P. Chuding, “Self-Focusing of a Laser Beam as a whole in Air,” Sov. J. Quantum Electron. 7, 510 (1977).
[CrossRef]

Grigorev, F. V.

L. V. Goryachev, F. V. Grigorev, V. V. Kalinovskii, S. B. Kormer, L. M. Lavrov, V. P. Chuding, “Self-Focusing of a Laser Beam as a whole in Air,” Sov. J. Quantum Electron. 7, 510 (1977).
[CrossRef]

Hagenlocker, E. E.

E. E. Hagenlocker, R. W. Minch, W. G. Rado, “Effects of Phonon Lifetime on Stimulated Optical Scattering in Gases,” Phys. Rev. 154, 226 (1967)
[CrossRef]

Hellwarch, R. W.

J. M. Cherlow, T. T. Yang, R. W. Hellwarch, “Nonlinear Optical Susceptibilities of Solvents,” IEEE J. Quantum Electron. QE-13, 644 (1976).
[CrossRef]

Henesian, M. A.

Herring, G. C.

Hodgson, E.

Holzrichter, J. F.

J. F. Holzrichter, “High Power Solid State Lasers,” Nature London 316, 311 (1985).
[CrossRef]

Hudson, R. D.

R. D. Hudson, “Critical Review of Photoabsorption Cross Sections,” NSRDS-NBS38 (1971)

Hyatt, H. A.

Kachen, G. I.

G. I. Kachen, W. H. Lowdermilk, “Relaxation Oscillations in Stimulated Raman Scattering,” Phys. Rev. A 16, 1657 (1977).
[CrossRef]

Kalinovskii, V. V.

L. V. Goryachev, F. V. Grigorev, V. V. Kalinovskii, S. B. Kormer, L. M. Lavrov, V. P. Chuding, “Self-Focusing of a Laser Beam as a whole in Air,” Sov. J. Quantum Electron. 7, 510 (1977).
[CrossRef]

Kellam, J. M.

Khokhlov, R. V.

See, for example, S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov, “Self-Focusing, Self-Defocusing and Self-Modulation of Laser Beams,” in Laser Handbook. Vol. 1, F. T. Arecchi, E. O. Shulz Dubois, Eds. (North-Holland, Amsterdam, 1972).

Kligler, D. J.

W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, “Nonlinear Optical Processes in Atoms and Molecules Using Rare Gas Halide Lasers,” IEEE J. Quantum Electron. QE-15, 380 (1979).
[CrossRef]

Klimenko, V. A.

I. I. Kondilenko, P. A. Korotov, V. A. Klimenko, N. G. Golubeva, “Absolute Raman Scattering Cross Sections of the Rotational Lines of Nitrogen and Oxygen,” Opt. Spectrosc. (USSR) 48, 411 (1980).

Klochner, H. W.

H. W. Schrother, H. W. Klochner, “Raman Scattering Cross Sections in Gases and Liquids,” A. Weber, Ed., in Raman Spectroscopy (Springer-Verlag, New York, 1979).

Kneizys, F. X.

F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer Code lowtran 6,” AFGL-TR-83-0187, 1Aug.1983 (Air Force Geophysics Laboratory, Hanscom AFB, MA 01731).

Kondilenko, I. I.

I. I. Kondilenko, P. A. Korotov, V. A. Klimenko, N. G. Golubeva, “Absolute Raman Scattering Cross Sections of the Rotational Lines of Nitrogen and Oxygen,” Opt. Spectrosc. (USSR) 48, 411 (1980).

Kormer, S. B.

L. V. Goryachev, F. V. Grigorev, V. V. Kalinovskii, S. B. Kormer, L. M. Lavrov, V. P. Chuding, “Self-Focusing of a Laser Beam as a whole in Air,” Sov. J. Quantum Electron. 7, 510 (1977).
[CrossRef]

Korobin, V. V.

D. V. Vlasov, R. A. Garaev, V. V. Korobin, R. S. Serov, “Measurement of Nonlinear Polarisability of Air,” Sov. Phys. JETP 49, 1033 (1979).

Korotov, P. A.

I. I. Kondilenko, P. A. Korotov, V. A. Klimenko, N. G. Golubeva, “Absolute Raman Scattering Cross Sections of the Rotational Lines of Nitrogen and Oxygen,” Opt. Spectrosc. (USSR) 48, 411 (1980).

Lallemand, P.

P. Lallemand, “The Stimulated Raman Effect,” in The Raman Effect, Vol. 1, A. Anderson, Ed. (Dekker, New York, 1971).

Lapp, M.

Lavrov, L. M.

L. V. Goryachev, F. V. Grigorev, V. V. Kalinovskii, S. B. Kormer, L. M. Lavrov, V. P. Chuding, “Self-Focusing of a Laser Beam as a whole in Air,” Sov. J. Quantum Electron. 7, 510 (1977).
[CrossRef]

Lowdermilk, W. H.

G. I. Kachen, W. H. Lowdermilk, “Relaxation Oscillations in Stimulated Raman Scattering,” Phys. Rev. A 16, 1657 (1977).
[CrossRef]

Makarov, A. I.

V. S. Averbakh, A. I. Makarov, V. I. Talanov, “Stimulated Raman Scattering on Rotational and Vibrational Transitions in Nitrogen Gas,” Sov. J. Quantum Electron, 8, 472 (1978).
[CrossRef]

Martin, W. E.

W. E. Martin, G. J. Caporaso, W. M. Fawley, D. Prosnitz, A. G. Cole, “Electron-Beam Guiding and Phase-Mix Damping by a Laser Ionized Channel,” Phys. Rev. Lett. 54, 685 (1985).
[CrossRef] [PubMed]

McEwan, M. J.

M. J. McEwan, L. F. Phillips, Chemistry of the Atmosphere (Wiley, New York, 1975).

Minch, R. W.

E. E. Hagenlocker, R. W. Minch, W. G. Rado, “Effects of Phonon Lifetime on Stimulated Optical Scattering in Gases,” Phys. Rev. 154, 226 (1967)
[CrossRef]

Morris, J. R.

J. A. Fleck, J. R. Morris, E. S. Bliss, “Small-Scale Self-Focusing Effects in a High Power Glass Laser System,” IEEE J. Quantum Electron. QE-14, 353 (1978).
[CrossRef]

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-Dependent Propagation of High Energy Laser Beams Through the Atmosphere,” Appl. Phys. 10, 129 (1976).
[CrossRef]

Murray, J. R.

M. A. Henesian, C. D. Swift, J. R. Murray, “Stimulated Rotational Raman Scattering in Nitrogen in Long Air Paths,” Opt. Lett. 10, 565 (1985).
[CrossRef] [PubMed]

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman Pulse Compression of Excimer Lasers for Application to Laser Fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

O’Neill, F.

Owadano, Y.

Pare, C.

Partanen, J. P.

Penny, C. M.

Phillips, L. F.

M. J. McEwan, L. F. Phillips, Chemistry of the Atmosphere (Wiley, New York, 1975).

Porto, S. P. S.

Prosnitz, D.

W. E. Martin, G. J. Caporaso, W. M. Fawley, D. Prosnitz, A. G. Cole, “Electron-Beam Guiding and Phase-Mix Damping by a Laser Ionized Channel,” Phys. Rev. Lett. 54, 685 (1985).
[CrossRef] [PubMed]

Rado, W. G.

E. E. Hagenlocker, R. W. Minch, W. G. Rado, “Effects of Phonon Lifetime on Stimulated Optical Scattering in Gases,” Phys. Rev. 154, 226 (1967)
[CrossRef]

W. G. Rado, “The Nonlinear Third Order Dielectric Susceptibility Coefficients of Gases and Optical Third Harmonic Generation,” Appl. Phys. Lett. 11, 123 (1967).
[CrossRef]

Rhodes, C. K.

W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, “Nonlinear Optical Processes in Atoms and Molecules Using Rare Gas Halide Lasers,” IEEE J. Quantum Electron. QE-15, 380 (1979).
[CrossRef]

Rokni, M.

M. Rokni, A. Flusberg, “Simulated Rotational Raman Scattering in the Atmosphere,” IEEE J. Quantum Electron. QE-22, 1102 (1986).
[CrossRef]

Ross, I. N.

Schrother, H. W.

H. W. Schrother, H. W. Klochner, “Raman Scattering Cross Sections in Gases and Liquids,” A. Weber, Ed., in Raman Spectroscopy (Springer-Verlag, New York, 1979).

Serov, R. S.

D. V. Vlasov, R. A. Garaev, V. V. Korobin, R. S. Serov, “Measurement of Nonlinear Polarisability of Air,” Sov. Phys. JETP 49, 1033 (1979).

Shaw, M. J.

St. Peters, R. L.

Sukhorukov, A. P.

See, for example, S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov, “Self-Focusing, Self-Defocusing and Self-Modulation of Laser Beams,” in Laser Handbook. Vol. 1, F. T. Arecchi, E. O. Shulz Dubois, Eds. (North-Holland, Amsterdam, 1972).

Swift, C. D.

Szoke, A.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman Pulse Compression of Excimer Lasers for Application to Laser Fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

Talanov, V. I.

V. S. Averbakh, A. I. Makarov, V. I. Talanov, “Stimulated Raman Scattering on Rotational and Vibrational Transitions in Nitrogen Gas,” Sov. J. Quantum Electron, 8, 472 (1978).
[CrossRef]

V. I. Bespalov, V. I. Talanov, “Filamentary Structure of Light Beams in Nonlinear Liquids,” JETP Lett. 3, 307 (1966).

Tomov, I. V.

See I. P. Christov, I. V. Tomov, “Growth of Raman-Stokes Waves in Focused Pump Beams,” Opt. Quantum Electron. 17, 207 (1985).
[CrossRef]

Vlasov, D. V.

D. V. Vlasov, R. A. Garaev, V. V. Korobin, R. S. Serov, “Measurement of Nonlinear Polarisability of Air,” Sov. Phys. JETP 49, 1033 (1979).

Weber, A.

A. Weber, “High Resolution Rotational Raman Spectra of Gases,” in Raman Spectroscopy, A. Weber, Ed. (Springer-Verlag, New York, 1979).

Yang, T. T.

J. M. Cherlow, T. T. Yang, R. W. Hellwarch, “Nonlinear Optical Susceptibilities of Solvents,” IEEE J. Quantum Electron. QE-13, 644 (1976).
[CrossRef]

Yariv, A.

A. Yariv, Introduction to Optical Electronics (Holt, Rinehart, & Wilson, New York, 1976), Chap. 3.

Zardecki, A.

Zuev, V. E.

See V. E. Zuev, Laser Beams in the Atmosphere [Consultants Bureau (Plenum), New York, 1982], and the references contained therein.
[CrossRef]

Appl. Opt. (2)

Appl. Phys. (1)

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-Dependent Propagation of High Energy Laser Beams Through the Atmosphere,” Appl. Phys. 10, 129 (1976).
[CrossRef]

Appl. Phys. Lett. (1)

W. G. Rado, “The Nonlinear Third Order Dielectric Susceptibility Coefficients of Gases and Optical Third Harmonic Generation,” Appl. Phys. Lett. 11, 123 (1967).
[CrossRef]

IEEE J. Quantum Electron. (5)

J. A. Fleck, J. R. Morris, E. S. Bliss, “Small-Scale Self-Focusing Effects in a High Power Glass Laser System,” IEEE J. Quantum Electron. QE-14, 353 (1978).
[CrossRef]

M. Rokni, A. Flusberg, “Simulated Rotational Raman Scattering in the Atmosphere,” IEEE J. Quantum Electron. QE-22, 1102 (1986).
[CrossRef]

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman Pulse Compression of Excimer Lasers for Application to Laser Fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

J. M. Cherlow, T. T. Yang, R. W. Hellwarch, “Nonlinear Optical Susceptibilities of Solvents,” IEEE J. Quantum Electron. QE-13, 644 (1976).
[CrossRef]

W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, “Nonlinear Optical Processes in Atoms and Molecules Using Rare Gas Halide Lasers,” IEEE J. Quantum Electron. QE-15, 380 (1979).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

JETP Lett. (1)

V. I. Bespalov, V. I. Talanov, “Filamentary Structure of Light Beams in Nonlinear Liquids,” JETP Lett. 3, 307 (1966).

Nature London (1)

J. F. Holzrichter, “High Power Solid State Lasers,” Nature London 316, 311 (1985).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

See I. P. Christov, I. V. Tomov, “Growth of Raman-Stokes Waves in Focused Pump Beams,” Opt. Quantum Electron. 17, 207 (1985).
[CrossRef]

Opt. Sci. (1)

D. C. Brown, “High Peak Power Nd-Glass Laser Systems,” Opt. Sci. 25, 188 (1981).

Opt. Spectrosc. (USSR) (1)

I. I. Kondilenko, P. A. Korotov, V. A. Klimenko, N. G. Golubeva, “Absolute Raman Scattering Cross Sections of the Rotational Lines of Nitrogen and Oxygen,” Opt. Spectrosc. (USSR) 48, 411 (1980).

Phys. Rev. (1)

E. E. Hagenlocker, R. W. Minch, W. G. Rado, “Effects of Phonon Lifetime on Stimulated Optical Scattering in Gases,” Phys. Rev. 154, 226 (1967)
[CrossRef]

Phys. Rev. A (1)

G. I. Kachen, W. H. Lowdermilk, “Relaxation Oscillations in Stimulated Raman Scattering,” Phys. Rev. A 16, 1657 (1977).
[CrossRef]

Phys. Rev. Lett. (1)

W. E. Martin, G. J. Caporaso, W. M. Fawley, D. Prosnitz, A. G. Cole, “Electron-Beam Guiding and Phase-Mix Damping by a Laser Ionized Channel,” Phys. Rev. Lett. 54, 685 (1985).
[CrossRef] [PubMed]

Sov. J. Quantum Electron (1)

V. S. Averbakh, A. I. Makarov, V. I. Talanov, “Stimulated Raman Scattering on Rotational and Vibrational Transitions in Nitrogen Gas,” Sov. J. Quantum Electron, 8, 472 (1978).
[CrossRef]

Sov. J. Quantum Electron. (1)

L. V. Goryachev, F. V. Grigorev, V. V. Kalinovskii, S. B. Kormer, L. M. Lavrov, V. P. Chuding, “Self-Focusing of a Laser Beam as a whole in Air,” Sov. J. Quantum Electron. 7, 510 (1977).
[CrossRef]

Sov. Phys. JETP (1)

D. V. Vlasov, R. A. Garaev, V. V. Korobin, R. S. Serov, “Measurement of Nonlinear Polarisability of Air,” Sov. Phys. JETP 49, 1033 (1979).

Other (13)

A. Weber, “High Resolution Rotational Raman Spectra of Gases,” in Raman Spectroscopy, A. Weber, Ed. (Springer-Verlag, New York, 1979).

A. Yariv, Introduction to Optical Electronics (Holt, Rinehart, & Wilson, New York, 1976), Chap. 3.

W. K. Bischel, G. Black, “Wavelength Dependence of Raman Scattering Cross Sections from 200–600 nm,” in Excimer Lasers—1983, AIP Conf. Proc. 100, C. K. Rhodes, H. Egger, H. Pummer, Eds. (American Institute of Physics, New York, 1983).

See, for example, R. H. Huddleston, S. L. Leonard, Eds., Plasma Diagnostic Techniques, (Academic, New York, 1965).

W. K. Bischel, SRI International; private communication.

See V. E. Zuev, Laser Beams in the Atmosphere [Consultants Bureau (Plenum), New York, 1982], and the references contained therein.
[CrossRef]

P. Lallemand, “The Stimulated Raman Effect,” in The Raman Effect, Vol. 1, A. Anderson, Ed. (Dekker, New York, 1971).

H. W. Schrother, H. W. Klochner, “Raman Scattering Cross Sections in Gases and Liquids,” A. Weber, Ed., in Raman Spectroscopy (Springer-Verlag, New York, 1979).

F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer Code lowtran 6,” AFGL-TR-83-0187, 1Aug.1983 (Air Force Geophysics Laboratory, Hanscom AFB, MA 01731).

U.S. Standard Atmosphere, 1976, NOAA S/T 76-1562, Washington, D.C.

M. J. McEwan, L. F. Phillips, Chemistry of the Atmosphere (Wiley, New York, 1975).

R. D. Hudson, “Critical Review of Photoabsorption Cross Sections,” NSRDS-NBS38 (1971)

See, for example, S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov, “Self-Focusing, Self-Defocusing and Self-Modulation of Laser Beams,” in Laser Handbook. Vol. 1, F. T. Arecchi, E. O. Shulz Dubois, Eds. (North-Holland, Amsterdam, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Plot of rotational Raman gain coefficient of nitrogen, atmospheric transmission, and beam breakup parameter with wavelength for ground to space propagation from 3- to 400-km altitude, 100 MW/cm2.

Fig. 2
Fig. 2

Plot of rotational Raman gain coefficient of nitrogen and atmospheric transmission for different zenith angles with wavelength for ground to space propagation of 3–400-km altitude, 100 MW/cm2.

Fig. 3
Fig. 3

Plot of Raman gain coefficients for different atmospheric constituents with wavelength for ground to space propagation of 3–400-km altitude, 100 MW/cm2.

Fig. 4
Fig. 4

Plot of rotational Raman gain coefficient of nitrogen and atmospheric transmission for different zenith angles with wavelength for space to ground propagation of 400–25-km altitude, 100 MW/cm2.

Fig. 5
Fig. 5

Beam radius changes due to whole beam self-focusing in ground to space beams. The notations are intensity (MW/cm2)/wavelength (μm)/zenith angle (deg).

Fig. 6
Fig. 6

Beam radius changes and rotational Raman gain in focused space to ground laser beams. Initial height is 400 km. The beam radii and log of gain coefficient are for final focused heights of a, 100, b, 75, c, 50, d, 25, e, 15, and f, 0 Km. Self-focusing is evident as curvature in the beam radius plots.

Tables (4)

Tables Icon

Table I Nonlinear Optical-Index Coefficients of Atmospheric Gases at 1 atm

Tables Icon

Table II Vibrational Stimulated Raman Cross Sections of Atmospheric Gases (νm = 20,492 cm−1)

Tables Icon

Table III Vibrational SRS Cross-Section Parameters from Bischel32

Tables Icon

Table IV Rotational SRS Cross-Section Data for Some Atmospheric Gases (νm = 20,492 cm−1)

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

n = n 0 + i γ i I N i ,
γ [ m 2 / W ] = 40 π n 0 c n 2 [ esu ] = 40 π n 0 c 12 ( π n 0 ) χ 1111 ( 3 ) [ esu ] .
γ i ( ν i ) = γ i ( ν m ) ( ν e ν m ) 3 ( ν e ν l ) 3 + δ ,
B 2 π λ l Σ i γ i N i I d z ,
B 2 π λ l Σ i γ i N i I T r ( 1 1 / T r ) ln T r d z ,
Γ [ m / W ] = 2 Λ N h n s 2 c 2 ν s 2 ν l Δ ν s π δ σ δ Ω .
Δ ν s = ρ ( 2040 + 4 . 2 T ) / 3 . 10 4 , J = 8 10 , = ρ ( 1860 + 4 . 1 T ) / 3 . 10 4 , J = 10 12 ,
Δ ν s = δ ν ρ ,
Δ ν s = Δ ν D = ν s c ( 2 k T m ) 1 / 2 ,
Δ N = N J ( 2 J + 1 2 J + 5 ) N J + 2 ,
N J = N ξ J ( 2 J + 1 ) exp [ J ( J + 1 ) b / k T ] Σ J ξ J ( 2 J + 1 ) exp [ J / ( J + 1 ) b / k T ] .
δ σ δ Ω ( ν 1 ) = δ σ δ Ω ( ν m ) ( ν l ν R ν m ν R ) 4 ( ν c 2 ν m 2 ) 2 ( ν c 2 ν l 2 ) 2 + δ ,
δ σ δ Ω = A ( ν l ν υ ) 4 ( ν i 2 ν l 2 ) 2 .
f = σ 2 σ 1 I 3 ( h ν ) 2 C { τ + C [ exp ( τ / C ) 1 ] } , 1 C = 1 τ r + k q N + σ 1 I h ν .
n = 1 ω p 2 2 ω l 2 ω p 2 = N e e 2 ε 0 m e ,
I ( r ) = I exp ( 2 r 2 α 2 ) ,
I ( r ) I ( 1 2 r 2 α 2 .
N ( r ) ( n 0 + γ I ) 2 γ I r 2 α 2 .
n ( r ) n 0 ( 1 α 2 r 2 2 ) α 2 = 4 γ I α 2 , n 0 1 .
n ( r ) ( 1 Δ ) ( 1 + α 2 r 2 2 ) Δ = 1 2 ω i 2 f N e 2 ε 0 m e , α 2 = 12 Δ α 2 .
[ cos ( α z ) 1 / α sin ( α z ) sin ( α z ) cos ( α z ) ] .
[ cosh ( α z ) 1 / α sinh ( α z ) α sinh ( α z ) cosh ( α z ) ] .
I c 4 π Γ Δ ν l ( n l n s ) [ W / cm 2 ] ,
I c 1 . 1 × 10 6 Δ ν l [ W / cm 2 ] .

Metrics