Abstract

The size and displacement of speckles produced by a diffuse object under illumination from a multimode optical fiber are investigated experimentally to confirm the theory presented in a previous paper [ J. Opt. Soc. Am. A 2, 1282 ( 1985)]. The experimental results show good agreement with the theory. It is verified that the mean size of speckles at the exit face of the fiber can be determined from measurements of the mean size of speckles at the observation plane. Furthermore, it is particularly emphasized that the speckle displacement is given by a relation, which is simpler than the conventional method where a Gaussian laser beam is used for the illumination.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Takai, T. Asakura, “Statistical Properties of Laser Speckles Produced Under Illumination from a Multimode Optical Fiber,” J. Opt. Soc. Am. A 2, 1282 (1985).
    [CrossRef]
  2. S. Ueha, N. Shibata, J. Tsujiuchi, “Flexible Coherent Optical Probe for Vibration Measurements,” Opt. Commun. 23, 407 (1977).
    [CrossRef]
  3. A. Hayashi, Y. Kitagawa, “Laser Speckle Velocimeter Utilizing Optical Fibers,” Opt. Commun. 43, 161 (1982).
    [CrossRef]
  4. A. Hayashi, Y. Kitagawa, “Fiber-Optic Distance Sensor Based on Speckle Velocity Detection,” Opt. Commun. 49, 91 (1984).
    [CrossRef]
  5. H. Fujii, T. Asakura, K. Nohira, Y. Shintomi, T. Ohura, “Blood Flow Observed by Time-Varying Laser Speckle,” Opt. Lett. 10, 104 (1985).
    [CrossRef] [PubMed]
  6. H. Fujii, T. Asakura, T. Okamoto, “Detection Properties of an Optical Fiber Probe for Speckle Velocimeter,” Opt. Commun. 55, 393 (1985).
    [CrossRef]
  7. N. Takai, T. Asakura, H. Ambar, Y. Aoki, T. Eiju, “Time-Average Readout of Speckle Photographs by Laser Illumination from a Vibrating Optical Fiber,” J. Opt. Soc. Am. A 3, 1305 (1986).
    [CrossRef]
  8. R. F. Bonner, T. R. Clem, P. D. Bowen, R. L. Bowman, “Laser-Doppler Continuous Real-Time Monitor of Pulsatile and Mean Blood Flow in Tissue Microcirculation,” in Scattering Techniques Applied to Supramolecular and Non-Equilibrium Systems, NATO ASI Series B, Vol. 73, S. H. Chen, B. Chu, R. Nossal, Eds. (Plenum, New York, 1981), pp. 685–702.
    [CrossRef]
  9. R. E. Epworth, “Modal Noise—Causes and Cures,” Laser Focus 17, No. 9, 109 (1981).
  10. K. J. Ebeling, “Statistical Properties of Spatial Derivatives of the Amplitude and Intensity of Monochromatic Speckle Patterns,” Opt. Acta 26, 1505 (1979).
    [CrossRef]
  11. K. J. Ebeling, “Experimental Investigation of Some Statistical Properties of Monochromatic Speckle Patterns,” Opt. Acta 26, 1345 (1979).
    [CrossRef]
  12. T. Asakura, N. Takai, “Dynamic Laser Speckles and Their Applications to Velocity Measurements of the Diffuse Object,” Appl. Phys. 25, 179 (1981).
    [CrossRef]

1986 (1)

1985 (3)

1984 (1)

A. Hayashi, Y. Kitagawa, “Fiber-Optic Distance Sensor Based on Speckle Velocity Detection,” Opt. Commun. 49, 91 (1984).
[CrossRef]

1982 (1)

A. Hayashi, Y. Kitagawa, “Laser Speckle Velocimeter Utilizing Optical Fibers,” Opt. Commun. 43, 161 (1982).
[CrossRef]

1981 (2)

R. E. Epworth, “Modal Noise—Causes and Cures,” Laser Focus 17, No. 9, 109 (1981).

T. Asakura, N. Takai, “Dynamic Laser Speckles and Their Applications to Velocity Measurements of the Diffuse Object,” Appl. Phys. 25, 179 (1981).
[CrossRef]

1979 (2)

K. J. Ebeling, “Statistical Properties of Spatial Derivatives of the Amplitude and Intensity of Monochromatic Speckle Patterns,” Opt. Acta 26, 1505 (1979).
[CrossRef]

K. J. Ebeling, “Experimental Investigation of Some Statistical Properties of Monochromatic Speckle Patterns,” Opt. Acta 26, 1345 (1979).
[CrossRef]

1977 (1)

S. Ueha, N. Shibata, J. Tsujiuchi, “Flexible Coherent Optical Probe for Vibration Measurements,” Opt. Commun. 23, 407 (1977).
[CrossRef]

Ambar, H.

Aoki, Y.

Asakura, T.

Bonner, R. F.

R. F. Bonner, T. R. Clem, P. D. Bowen, R. L. Bowman, “Laser-Doppler Continuous Real-Time Monitor of Pulsatile and Mean Blood Flow in Tissue Microcirculation,” in Scattering Techniques Applied to Supramolecular and Non-Equilibrium Systems, NATO ASI Series B, Vol. 73, S. H. Chen, B. Chu, R. Nossal, Eds. (Plenum, New York, 1981), pp. 685–702.
[CrossRef]

Bowen, P. D.

R. F. Bonner, T. R. Clem, P. D. Bowen, R. L. Bowman, “Laser-Doppler Continuous Real-Time Monitor of Pulsatile and Mean Blood Flow in Tissue Microcirculation,” in Scattering Techniques Applied to Supramolecular and Non-Equilibrium Systems, NATO ASI Series B, Vol. 73, S. H. Chen, B. Chu, R. Nossal, Eds. (Plenum, New York, 1981), pp. 685–702.
[CrossRef]

Bowman, R. L.

R. F. Bonner, T. R. Clem, P. D. Bowen, R. L. Bowman, “Laser-Doppler Continuous Real-Time Monitor of Pulsatile and Mean Blood Flow in Tissue Microcirculation,” in Scattering Techniques Applied to Supramolecular and Non-Equilibrium Systems, NATO ASI Series B, Vol. 73, S. H. Chen, B. Chu, R. Nossal, Eds. (Plenum, New York, 1981), pp. 685–702.
[CrossRef]

Clem, T. R.

R. F. Bonner, T. R. Clem, P. D. Bowen, R. L. Bowman, “Laser-Doppler Continuous Real-Time Monitor of Pulsatile and Mean Blood Flow in Tissue Microcirculation,” in Scattering Techniques Applied to Supramolecular and Non-Equilibrium Systems, NATO ASI Series B, Vol. 73, S. H. Chen, B. Chu, R. Nossal, Eds. (Plenum, New York, 1981), pp. 685–702.
[CrossRef]

Ebeling, K. J.

K. J. Ebeling, “Experimental Investigation of Some Statistical Properties of Monochromatic Speckle Patterns,” Opt. Acta 26, 1345 (1979).
[CrossRef]

K. J. Ebeling, “Statistical Properties of Spatial Derivatives of the Amplitude and Intensity of Monochromatic Speckle Patterns,” Opt. Acta 26, 1505 (1979).
[CrossRef]

Eiju, T.

Epworth, R. E.

R. E. Epworth, “Modal Noise—Causes and Cures,” Laser Focus 17, No. 9, 109 (1981).

Fujii, H.

H. Fujii, T. Asakura, K. Nohira, Y. Shintomi, T. Ohura, “Blood Flow Observed by Time-Varying Laser Speckle,” Opt. Lett. 10, 104 (1985).
[CrossRef] [PubMed]

H. Fujii, T. Asakura, T. Okamoto, “Detection Properties of an Optical Fiber Probe for Speckle Velocimeter,” Opt. Commun. 55, 393 (1985).
[CrossRef]

Hayashi, A.

A. Hayashi, Y. Kitagawa, “Fiber-Optic Distance Sensor Based on Speckle Velocity Detection,” Opt. Commun. 49, 91 (1984).
[CrossRef]

A. Hayashi, Y. Kitagawa, “Laser Speckle Velocimeter Utilizing Optical Fibers,” Opt. Commun. 43, 161 (1982).
[CrossRef]

Kitagawa, Y.

A. Hayashi, Y. Kitagawa, “Fiber-Optic Distance Sensor Based on Speckle Velocity Detection,” Opt. Commun. 49, 91 (1984).
[CrossRef]

A. Hayashi, Y. Kitagawa, “Laser Speckle Velocimeter Utilizing Optical Fibers,” Opt. Commun. 43, 161 (1982).
[CrossRef]

Nohira, K.

Ohura, T.

Okamoto, T.

H. Fujii, T. Asakura, T. Okamoto, “Detection Properties of an Optical Fiber Probe for Speckle Velocimeter,” Opt. Commun. 55, 393 (1985).
[CrossRef]

Shibata, N.

S. Ueha, N. Shibata, J. Tsujiuchi, “Flexible Coherent Optical Probe for Vibration Measurements,” Opt. Commun. 23, 407 (1977).
[CrossRef]

Shintomi, Y.

Takai, N.

Tsujiuchi, J.

S. Ueha, N. Shibata, J. Tsujiuchi, “Flexible Coherent Optical Probe for Vibration Measurements,” Opt. Commun. 23, 407 (1977).
[CrossRef]

Ueha, S.

S. Ueha, N. Shibata, J. Tsujiuchi, “Flexible Coherent Optical Probe for Vibration Measurements,” Opt. Commun. 23, 407 (1977).
[CrossRef]

Appl. Phys. (1)

T. Asakura, N. Takai, “Dynamic Laser Speckles and Their Applications to Velocity Measurements of the Diffuse Object,” Appl. Phys. 25, 179 (1981).
[CrossRef]

J. Opt. Soc. Am. A (2)

Laser Focus (1)

R. E. Epworth, “Modal Noise—Causes and Cures,” Laser Focus 17, No. 9, 109 (1981).

Opt. Acta (2)

K. J. Ebeling, “Statistical Properties of Spatial Derivatives of the Amplitude and Intensity of Monochromatic Speckle Patterns,” Opt. Acta 26, 1505 (1979).
[CrossRef]

K. J. Ebeling, “Experimental Investigation of Some Statistical Properties of Monochromatic Speckle Patterns,” Opt. Acta 26, 1345 (1979).
[CrossRef]

Opt. Commun. (4)

H. Fujii, T. Asakura, T. Okamoto, “Detection Properties of an Optical Fiber Probe for Speckle Velocimeter,” Opt. Commun. 55, 393 (1985).
[CrossRef]

S. Ueha, N. Shibata, J. Tsujiuchi, “Flexible Coherent Optical Probe for Vibration Measurements,” Opt. Commun. 23, 407 (1977).
[CrossRef]

A. Hayashi, Y. Kitagawa, “Laser Speckle Velocimeter Utilizing Optical Fibers,” Opt. Commun. 43, 161 (1982).
[CrossRef]

A. Hayashi, Y. Kitagawa, “Fiber-Optic Distance Sensor Based on Speckle Velocity Detection,” Opt. Commun. 49, 91 (1984).
[CrossRef]

Opt. Lett. (1)

Other (1)

R. F. Bonner, T. R. Clem, P. D. Bowen, R. L. Bowman, “Laser-Doppler Continuous Real-Time Monitor of Pulsatile and Mean Blood Flow in Tissue Microcirculation,” in Scattering Techniques Applied to Supramolecular and Non-Equilibrium Systems, NATO ASI Series B, Vol. 73, S. H. Chen, B. Chu, R. Nossal, Eds. (Plenum, New York, 1981), pp. 685–702.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the experimental arrangement.

Fig. 2
Fig. 2

Binary maps of speckle patterns obtained for κ = 10, 50, and 125 of the optical system parameter.

Fig. 3
Fig. 3

Histograms of the high-level duration for κ = 10, 50, and 125 obtained from the speckle binary maps of Fig. 2.

Fig. 4
Fig. 4

Experimental results for the size of observation-plane speckles as a function of the optical system parameter κ: (a) step-index fibers and (b) graded-index fibers, with core diameters of 50 and 80 μm.

Fig. 5
Fig. 5

Speckle patterns observed at the source, object, and observation planes for κ = 100 (actually, l1 = 5 mm and l2 = 500 mm) under illumination by step-index fibers with core diameters of (a) 50 μm and (b) 80 μm.

Fig. 6
Fig. 6

Speckle patterns observed at the source, object, and observation planes for κ = 100 (actually, l1 = 5 mm and l2 = 500 mm) under illumination by graded-index fibers with core diameters of (a) 50 μm and (b) 80 μm.

Fig. 7
Fig. 7

Cross-correlation functions between two speckle patterns before and after the object displacements of d = (a) 0, (b) 2 μm, and (c) 4 μm when κ = 50.

Fig. 8
Fig. 8

Experimental results for speckle displacement D for various values of κ as a function of object displacement d. The straight lines are the theoretical results and the solid circles are the experimental data.

Tables (1)

Tables Icon

Table I Measured Mean Size ζ0 of Speckles at the Source

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ζ 2 = κ ζ 0 ,
V = ( 1 + κ ) v .
D = ( 1 + κ ) d ,
X c = ( 1 + κ ) ( λ l 1 / π a ) = λ ( l 1 + l 2 ) / π a ,
D = ( 1 + l 2 / ρ ) d ,

Metrics