Abstract

The power penalty due to modal noise has been quantified and experimentally verified for single-mode fiber systems operating above their cutoff frequency. It is shown how the modal power distribution evolves from one connector/splice to the next and affects the degree of modal noise.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Soderstrom, T. R. Block, D. L. Karst, T. Lu, “The Compact Disc (CD) Laser as a Low-Cost, High Performance Source for Fiber Optic Communication,” in Technical Digest, FOC/LAN 86, Orlando (1986), p.263.
  2. R. E. Epworth, “The phenomenon of Modal Noise in Analog and Digital Optical Fiber Systems,” in Technical Digest, Fourth European Conference on Optical Communication, Genoa (1978), p. 492.
  3. T. H. Wood, “Actual Modal Power Distributions in Multimode Optical Fibers and their Effect on Modal Noise,” Opt. Lett. 9, 102 (1984).
    [CrossRef] [PubMed]
  4. T. H. Wood, L. A. Ewell, “Increased Received Power and Decreased Modal Noise by Preferential Excitation of Low-Order Modes in Multimode Optical Fiber Transmission Systems,” IEEE/OSA J. Lightwave Technol. LT-4, 391 (1986).
    [CrossRef]
  5. K. Petermann, “Nonlinear Distortions and Noise in Optical Communication Systems due to Fiber Connectors,” IEEE J. Quantum Electron. QE-16, 761 (1980).
    [CrossRef]
  6. I. A. White, S. C. Mettler, “Modal Analysis of Loss and Mode Mixing in Multimode Parabolic Index Splices,” Bell Syst. Tech. J. 62, 1189 (1983).
  7. J. Sakai, T. Kimura, “Splice Loss Evaluation for Optical Fibers with Arbitrary Index Profile,” Appl. Opt. 17, 2848 (1978).
    [CrossRef] [PubMed]
  8. F. T. Stone, “Modal Noise in Singlemode Fiber Communication System,” Proc. Soc. Photo-Opt. Instrum. Eng. 500, 17 (1984).
  9. N. K. Cheung, A. Tomita, P. F. Glodis, “Observation of Modal Noise in Singlemode Fiber Transmission Systems,” Electron. Lett. 21, 5 (1985).
    [CrossRef]
  10. S. Heckmann, “Modal Noise in Singlemode Fibers Operated Slightly above Cutoff,” Electron. Lett. 17, 499 (1981).
    [CrossRef]
  11. F. M. Sears, I. A. White, R. B. Kummer, F. T. Stone, “Probability of Modal Noise in Single-Mode Lightguide Systems,” IEEE/OSA J. Lightwave Technol. LT-4, 652 (1986).
    [CrossRef]
  12. M. Stern, W. I. Way, V. Shah, M. B. Romeiser, W. C. Young, J. W. Krupsky, “800-nm Digital Transmission in 1300-nm Optimized Singlemode Fiber,” in Technical Digest, Optical Fiber Communication Conference–Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper MD2.
  13. D. Marcuse, “Loss Analysis of Singlemode Fiber Splices,” Bell Syst. Tech. J. 56, 703 (1977).
  14. D. Gloge, “Offset and Tilt Loss in Optical Fiber Splices,” Bell Syst. Tech. J. 55, 905 (1976).
  15. P. R. Couch, R. E. Epworth, J. M. T. Rowe, R. W. Musk, “The Modal Noise Characterization and Specification of Lasers with Fiber Tails,” in Technical Digest, Ninth European Conference on Optical Communication, Geneva (1983), p. 139.
  16. D. Uttam, “Measurement of Intermodal Delay in a Dual-Mode Optical Fiber,” Electron. Lett. 21, 1031 (1985).
    [CrossRef]
  17. D. Gloge, “Weakly Guiding Fibers,” Appl. Opt. 10, 2247 (1971).
  18. Actually there are two modes with orthogonal polarizations Ex and Ey, the term SMF thus applies to a given polarization of light power.
  19. Due to nonzero l, there are two orthogonal polarizations Ex and Ey, and two orientations coslϕ and sinlϕ.
  20. D. Marcuse, D. Gloge, E. A. J. Marcatili, “Guiding Properties of Fibers,” in Optical Fiber Telecommunications, S. E. Miller, A. G. Chynoweth, Eds. (Academic, New York, 1979), p. 45.
  21. S. Kawakami, S. Nishida, “Perturbation Theory of a Doubly Clad Optical Fiber with a Low-Index Inner Cladding,” IEEE J. Quantum Electron. QE-11, 130 (1975).
    [CrossRef]
  22. M. Monerie, “Propagation in Doubly Clad Single-Mode Fibers,” IEEE J. Quantum Electron. QE-18, 535 (1982).
    [CrossRef]
  23. P. F. Glodis, M. J. Buckler, AT&T Bell Laboratories; private communication.

1986 (2)

T. H. Wood, L. A. Ewell, “Increased Received Power and Decreased Modal Noise by Preferential Excitation of Low-Order Modes in Multimode Optical Fiber Transmission Systems,” IEEE/OSA J. Lightwave Technol. LT-4, 391 (1986).
[CrossRef]

F. M. Sears, I. A. White, R. B. Kummer, F. T. Stone, “Probability of Modal Noise in Single-Mode Lightguide Systems,” IEEE/OSA J. Lightwave Technol. LT-4, 652 (1986).
[CrossRef]

1985 (2)

D. Uttam, “Measurement of Intermodal Delay in a Dual-Mode Optical Fiber,” Electron. Lett. 21, 1031 (1985).
[CrossRef]

N. K. Cheung, A. Tomita, P. F. Glodis, “Observation of Modal Noise in Singlemode Fiber Transmission Systems,” Electron. Lett. 21, 5 (1985).
[CrossRef]

1984 (2)

T. H. Wood, “Actual Modal Power Distributions in Multimode Optical Fibers and their Effect on Modal Noise,” Opt. Lett. 9, 102 (1984).
[CrossRef] [PubMed]

F. T. Stone, “Modal Noise in Singlemode Fiber Communication System,” Proc. Soc. Photo-Opt. Instrum. Eng. 500, 17 (1984).

1983 (1)

I. A. White, S. C. Mettler, “Modal Analysis of Loss and Mode Mixing in Multimode Parabolic Index Splices,” Bell Syst. Tech. J. 62, 1189 (1983).

1982 (1)

M. Monerie, “Propagation in Doubly Clad Single-Mode Fibers,” IEEE J. Quantum Electron. QE-18, 535 (1982).
[CrossRef]

1981 (1)

S. Heckmann, “Modal Noise in Singlemode Fibers Operated Slightly above Cutoff,” Electron. Lett. 17, 499 (1981).
[CrossRef]

1980 (1)

K. Petermann, “Nonlinear Distortions and Noise in Optical Communication Systems due to Fiber Connectors,” IEEE J. Quantum Electron. QE-16, 761 (1980).
[CrossRef]

1978 (1)

1977 (1)

D. Marcuse, “Loss Analysis of Singlemode Fiber Splices,” Bell Syst. Tech. J. 56, 703 (1977).

1976 (1)

D. Gloge, “Offset and Tilt Loss in Optical Fiber Splices,” Bell Syst. Tech. J. 55, 905 (1976).

1975 (1)

S. Kawakami, S. Nishida, “Perturbation Theory of a Doubly Clad Optical Fiber with a Low-Index Inner Cladding,” IEEE J. Quantum Electron. QE-11, 130 (1975).
[CrossRef]

1971 (1)

D. Gloge, “Weakly Guiding Fibers,” Appl. Opt. 10, 2247 (1971).

Block, T. R.

R. L. Soderstrom, T. R. Block, D. L. Karst, T. Lu, “The Compact Disc (CD) Laser as a Low-Cost, High Performance Source for Fiber Optic Communication,” in Technical Digest, FOC/LAN 86, Orlando (1986), p.263.

Buckler, M. J.

P. F. Glodis, M. J. Buckler, AT&T Bell Laboratories; private communication.

Cheung, N. K.

N. K. Cheung, A. Tomita, P. F. Glodis, “Observation of Modal Noise in Singlemode Fiber Transmission Systems,” Electron. Lett. 21, 5 (1985).
[CrossRef]

Couch, P. R.

P. R. Couch, R. E. Epworth, J. M. T. Rowe, R. W. Musk, “The Modal Noise Characterization and Specification of Lasers with Fiber Tails,” in Technical Digest, Ninth European Conference on Optical Communication, Geneva (1983), p. 139.

Epworth, R. E.

P. R. Couch, R. E. Epworth, J. M. T. Rowe, R. W. Musk, “The Modal Noise Characterization and Specification of Lasers with Fiber Tails,” in Technical Digest, Ninth European Conference on Optical Communication, Geneva (1983), p. 139.

R. E. Epworth, “The phenomenon of Modal Noise in Analog and Digital Optical Fiber Systems,” in Technical Digest, Fourth European Conference on Optical Communication, Genoa (1978), p. 492.

Ewell, L. A.

T. H. Wood, L. A. Ewell, “Increased Received Power and Decreased Modal Noise by Preferential Excitation of Low-Order Modes in Multimode Optical Fiber Transmission Systems,” IEEE/OSA J. Lightwave Technol. LT-4, 391 (1986).
[CrossRef]

Glodis, P. F.

N. K. Cheung, A. Tomita, P. F. Glodis, “Observation of Modal Noise in Singlemode Fiber Transmission Systems,” Electron. Lett. 21, 5 (1985).
[CrossRef]

P. F. Glodis, M. J. Buckler, AT&T Bell Laboratories; private communication.

Gloge, D.

D. Gloge, “Offset and Tilt Loss in Optical Fiber Splices,” Bell Syst. Tech. J. 55, 905 (1976).

D. Gloge, “Weakly Guiding Fibers,” Appl. Opt. 10, 2247 (1971).

D. Marcuse, D. Gloge, E. A. J. Marcatili, “Guiding Properties of Fibers,” in Optical Fiber Telecommunications, S. E. Miller, A. G. Chynoweth, Eds. (Academic, New York, 1979), p. 45.

Heckmann, S.

S. Heckmann, “Modal Noise in Singlemode Fibers Operated Slightly above Cutoff,” Electron. Lett. 17, 499 (1981).
[CrossRef]

Karst, D. L.

R. L. Soderstrom, T. R. Block, D. L. Karst, T. Lu, “The Compact Disc (CD) Laser as a Low-Cost, High Performance Source for Fiber Optic Communication,” in Technical Digest, FOC/LAN 86, Orlando (1986), p.263.

Kawakami, S.

S. Kawakami, S. Nishida, “Perturbation Theory of a Doubly Clad Optical Fiber with a Low-Index Inner Cladding,” IEEE J. Quantum Electron. QE-11, 130 (1975).
[CrossRef]

Kimura, T.

Krupsky, J. W.

M. Stern, W. I. Way, V. Shah, M. B. Romeiser, W. C. Young, J. W. Krupsky, “800-nm Digital Transmission in 1300-nm Optimized Singlemode Fiber,” in Technical Digest, Optical Fiber Communication Conference–Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper MD2.

Kummer, R. B.

F. M. Sears, I. A. White, R. B. Kummer, F. T. Stone, “Probability of Modal Noise in Single-Mode Lightguide Systems,” IEEE/OSA J. Lightwave Technol. LT-4, 652 (1986).
[CrossRef]

Lu, T.

R. L. Soderstrom, T. R. Block, D. L. Karst, T. Lu, “The Compact Disc (CD) Laser as a Low-Cost, High Performance Source for Fiber Optic Communication,” in Technical Digest, FOC/LAN 86, Orlando (1986), p.263.

Marcatili, E. A. J.

D. Marcuse, D. Gloge, E. A. J. Marcatili, “Guiding Properties of Fibers,” in Optical Fiber Telecommunications, S. E. Miller, A. G. Chynoweth, Eds. (Academic, New York, 1979), p. 45.

Marcuse, D.

D. Marcuse, “Loss Analysis of Singlemode Fiber Splices,” Bell Syst. Tech. J. 56, 703 (1977).

D. Marcuse, D. Gloge, E. A. J. Marcatili, “Guiding Properties of Fibers,” in Optical Fiber Telecommunications, S. E. Miller, A. G. Chynoweth, Eds. (Academic, New York, 1979), p. 45.

Mettler, S. C.

I. A. White, S. C. Mettler, “Modal Analysis of Loss and Mode Mixing in Multimode Parabolic Index Splices,” Bell Syst. Tech. J. 62, 1189 (1983).

Monerie, M.

M. Monerie, “Propagation in Doubly Clad Single-Mode Fibers,” IEEE J. Quantum Electron. QE-18, 535 (1982).
[CrossRef]

Musk, R. W.

P. R. Couch, R. E. Epworth, J. M. T. Rowe, R. W. Musk, “The Modal Noise Characterization and Specification of Lasers with Fiber Tails,” in Technical Digest, Ninth European Conference on Optical Communication, Geneva (1983), p. 139.

Nishida, S.

S. Kawakami, S. Nishida, “Perturbation Theory of a Doubly Clad Optical Fiber with a Low-Index Inner Cladding,” IEEE J. Quantum Electron. QE-11, 130 (1975).
[CrossRef]

Petermann, K.

K. Petermann, “Nonlinear Distortions and Noise in Optical Communication Systems due to Fiber Connectors,” IEEE J. Quantum Electron. QE-16, 761 (1980).
[CrossRef]

Romeiser, M. B.

M. Stern, W. I. Way, V. Shah, M. B. Romeiser, W. C. Young, J. W. Krupsky, “800-nm Digital Transmission in 1300-nm Optimized Singlemode Fiber,” in Technical Digest, Optical Fiber Communication Conference–Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper MD2.

Rowe, J. M. T.

P. R. Couch, R. E. Epworth, J. M. T. Rowe, R. W. Musk, “The Modal Noise Characterization and Specification of Lasers with Fiber Tails,” in Technical Digest, Ninth European Conference on Optical Communication, Geneva (1983), p. 139.

Sakai, J.

Sears, F. M.

F. M. Sears, I. A. White, R. B. Kummer, F. T. Stone, “Probability of Modal Noise in Single-Mode Lightguide Systems,” IEEE/OSA J. Lightwave Technol. LT-4, 652 (1986).
[CrossRef]

Shah, V.

M. Stern, W. I. Way, V. Shah, M. B. Romeiser, W. C. Young, J. W. Krupsky, “800-nm Digital Transmission in 1300-nm Optimized Singlemode Fiber,” in Technical Digest, Optical Fiber Communication Conference–Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper MD2.

Soderstrom, R. L.

R. L. Soderstrom, T. R. Block, D. L. Karst, T. Lu, “The Compact Disc (CD) Laser as a Low-Cost, High Performance Source for Fiber Optic Communication,” in Technical Digest, FOC/LAN 86, Orlando (1986), p.263.

Stern, M.

M. Stern, W. I. Way, V. Shah, M. B. Romeiser, W. C. Young, J. W. Krupsky, “800-nm Digital Transmission in 1300-nm Optimized Singlemode Fiber,” in Technical Digest, Optical Fiber Communication Conference–Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper MD2.

Stone, F. T.

F. M. Sears, I. A. White, R. B. Kummer, F. T. Stone, “Probability of Modal Noise in Single-Mode Lightguide Systems,” IEEE/OSA J. Lightwave Technol. LT-4, 652 (1986).
[CrossRef]

F. T. Stone, “Modal Noise in Singlemode Fiber Communication System,” Proc. Soc. Photo-Opt. Instrum. Eng. 500, 17 (1984).

Tomita, A.

N. K. Cheung, A. Tomita, P. F. Glodis, “Observation of Modal Noise in Singlemode Fiber Transmission Systems,” Electron. Lett. 21, 5 (1985).
[CrossRef]

Uttam, D.

D. Uttam, “Measurement of Intermodal Delay in a Dual-Mode Optical Fiber,” Electron. Lett. 21, 1031 (1985).
[CrossRef]

Way, W. I.

M. Stern, W. I. Way, V. Shah, M. B. Romeiser, W. C. Young, J. W. Krupsky, “800-nm Digital Transmission in 1300-nm Optimized Singlemode Fiber,” in Technical Digest, Optical Fiber Communication Conference–Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper MD2.

White, I. A.

F. M. Sears, I. A. White, R. B. Kummer, F. T. Stone, “Probability of Modal Noise in Single-Mode Lightguide Systems,” IEEE/OSA J. Lightwave Technol. LT-4, 652 (1986).
[CrossRef]

I. A. White, S. C. Mettler, “Modal Analysis of Loss and Mode Mixing in Multimode Parabolic Index Splices,” Bell Syst. Tech. J. 62, 1189 (1983).

Wood, T. H.

T. H. Wood, L. A. Ewell, “Increased Received Power and Decreased Modal Noise by Preferential Excitation of Low-Order Modes in Multimode Optical Fiber Transmission Systems,” IEEE/OSA J. Lightwave Technol. LT-4, 391 (1986).
[CrossRef]

T. H. Wood, “Actual Modal Power Distributions in Multimode Optical Fibers and their Effect on Modal Noise,” Opt. Lett. 9, 102 (1984).
[CrossRef] [PubMed]

Young, W. C.

M. Stern, W. I. Way, V. Shah, M. B. Romeiser, W. C. Young, J. W. Krupsky, “800-nm Digital Transmission in 1300-nm Optimized Singlemode Fiber,” in Technical Digest, Optical Fiber Communication Conference–Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper MD2.

Appl. Opt. (2)

Bell Syst. Tech. J. (3)

I. A. White, S. C. Mettler, “Modal Analysis of Loss and Mode Mixing in Multimode Parabolic Index Splices,” Bell Syst. Tech. J. 62, 1189 (1983).

D. Marcuse, “Loss Analysis of Singlemode Fiber Splices,” Bell Syst. Tech. J. 56, 703 (1977).

D. Gloge, “Offset and Tilt Loss in Optical Fiber Splices,” Bell Syst. Tech. J. 55, 905 (1976).

Electron. Lett. (3)

D. Uttam, “Measurement of Intermodal Delay in a Dual-Mode Optical Fiber,” Electron. Lett. 21, 1031 (1985).
[CrossRef]

N. K. Cheung, A. Tomita, P. F. Glodis, “Observation of Modal Noise in Singlemode Fiber Transmission Systems,” Electron. Lett. 21, 5 (1985).
[CrossRef]

S. Heckmann, “Modal Noise in Singlemode Fibers Operated Slightly above Cutoff,” Electron. Lett. 17, 499 (1981).
[CrossRef]

IEEE J. Quantum Electron. (3)

S. Kawakami, S. Nishida, “Perturbation Theory of a Doubly Clad Optical Fiber with a Low-Index Inner Cladding,” IEEE J. Quantum Electron. QE-11, 130 (1975).
[CrossRef]

M. Monerie, “Propagation in Doubly Clad Single-Mode Fibers,” IEEE J. Quantum Electron. QE-18, 535 (1982).
[CrossRef]

K. Petermann, “Nonlinear Distortions and Noise in Optical Communication Systems due to Fiber Connectors,” IEEE J. Quantum Electron. QE-16, 761 (1980).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (2)

T. H. Wood, L. A. Ewell, “Increased Received Power and Decreased Modal Noise by Preferential Excitation of Low-Order Modes in Multimode Optical Fiber Transmission Systems,” IEEE/OSA J. Lightwave Technol. LT-4, 391 (1986).
[CrossRef]

F. M. Sears, I. A. White, R. B. Kummer, F. T. Stone, “Probability of Modal Noise in Single-Mode Lightguide Systems,” IEEE/OSA J. Lightwave Technol. LT-4, 652 (1986).
[CrossRef]

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

F. T. Stone, “Modal Noise in Singlemode Fiber Communication System,” Proc. Soc. Photo-Opt. Instrum. Eng. 500, 17 (1984).

Other (8)

P. R. Couch, R. E. Epworth, J. M. T. Rowe, R. W. Musk, “The Modal Noise Characterization and Specification of Lasers with Fiber Tails,” in Technical Digest, Ninth European Conference on Optical Communication, Geneva (1983), p. 139.

M. Stern, W. I. Way, V. Shah, M. B. Romeiser, W. C. Young, J. W. Krupsky, “800-nm Digital Transmission in 1300-nm Optimized Singlemode Fiber,” in Technical Digest, Optical Fiber Communication Conference–Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper MD2.

P. F. Glodis, M. J. Buckler, AT&T Bell Laboratories; private communication.

Actually there are two modes with orthogonal polarizations Ex and Ey, the term SMF thus applies to a given polarization of light power.

Due to nonzero l, there are two orthogonal polarizations Ex and Ey, and two orientations coslϕ and sinlϕ.

D. Marcuse, D. Gloge, E. A. J. Marcatili, “Guiding Properties of Fibers,” in Optical Fiber Telecommunications, S. E. Miller, A. G. Chynoweth, Eds. (Academic, New York, 1979), p. 45.

R. L. Soderstrom, T. R. Block, D. L. Karst, T. Lu, “The Compact Disc (CD) Laser as a Low-Cost, High Performance Source for Fiber Optic Communication,” in Technical Digest, FOC/LAN 86, Orlando (1986), p.263.

R. E. Epworth, “The phenomenon of Modal Noise in Analog and Digital Optical Fiber Systems,” in Technical Digest, Fourth European Conference on Optical Communication, Genoa (1978), p. 492.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Three sections of single-mode fibers SMF1, SMF2, and SMF3 connected via two connections C1 and C2. Symbol x represents the mode power ratio of the fundamental to the next higher order mode.

Fig. 2
Fig. 2

Coupling efficiency 〈η〉 and its standard deviation σ(η) as a function of the normalized offset for dual-mode fibers. V = 4.1, a = 4.15 μm, and λ = 780 nm.

Fig. 3
Fig. 3

Direct current SNR as a function of coupling loss for a coherent source, parameter values same as in Fig. 2.

Fig. 4
Fig. 4

Evolution of the mode power ratio x2 as a function of the input MPR x1 and the loss at C1.

Fig. 5
Fig. 5

Experimental setup for measurement of the modal noise penalty.

Fig. 6
Fig. 6

Excess power penalty due to modal noise for different input loss at C1 and C2.

Fig. 7
Fig. 7

Modal noise eye traces for two different loss configurations of C1 and C2 (a) penalty = 1.85 dB (C1 = 3 dB and C2 = 2 dB) and (b) penalty = 2.37 dB (C1 = 0.5 dB and C2 = 2 dB).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

η = x F i i + F j j x + 1 ,
σ ( η ) = x G ( τ i j ) F i j x + 1 ,
dc SNR = 10 log [ η 2 σ 2 ( η ) ] ,
Penalty = 10 log [ 1 1 + k = 1 K 10 β k ] ,
x 2 = x 1 C i i 2 + C j i 2 C j j 2 + x 1 C i j 2 .
V = k a n 1 2 n 2 2 ,
n = { n 1 ( r a 1 ) , n 2 ( a 1 r a 2 ) , n 0 ( a 2 r ) ,
V 0 = k a 1 n 1 2 n 0 2 , V 2 = k a 1 n 1 2 n 2 2 .
V 0 c = V 2 c n 1 2 n 0 2 n 1 2 n 2 2
L P 11 mode : V 2 c = 2 . 75 , λ c = 1180 nm , L P 02 mode : V 2 c 4 . 5 , λ c 715 nm , L P 21 mode : V 2 c 4 . 5 , λ c 715 nm .

Metrics