Abstract

A new optical fiber Fabry-Perot (F.P.) temperature sensor is proposed and demonstrated. In particular, it can discern the temperature rise from the temperature drop. With this sensor, the temperature change and the direction of temperature change can be determined as a function of time. The basic concept has been verified experimentally. The results of fiber F.P. sensor measurement compare well with an independent thermocouple measurement. To provide further insight, details of the experimentally observed interference fringes have also been compared to a computer simulation. Possible real-time implementations with highspeed electronics are suggested.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. B. Hocker, “Fiber-Optic Sensing of Pressure and Temperature,” Appl. Opt. 18, 1445 (1979).
    [CrossRef] [PubMed]
  2. N. Lagakos, J. A. Bucaro, J. Jarzynski, “Temperature-Induced Optical Phase Shifts in Fibers,” Appl. Opt. 20, 2305 (1981).
    [CrossRef] [PubMed]
  3. T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982).
    [CrossRef]
  4. T. Ito, “Precise Measurement of the Change in the Optical Length of a Fiber-Optic Fabry-Perot Interferometer,” Appl. Opt. 25, 1072 (1986).
    [CrossRef] [PubMed]
  5. M. Born, E. Wolf, Principle of Optics (Pergamon, Oxford, 1980).
  6. R. P. Benedict, Fundamentals of Temperature, Pressure, and Flow Measurements (Wiley, New York, 1969).
  7. M. Corke, A. D. Kersey, D. A. Jackson, J. D. C. Jones, “All-Fiber Michelson Thermometer,” Electron. Lett. 19, 471 (1983).
    [CrossRef]
  8. I. P. Giles, D. Uttam, B. Culshaw, D. E. N. Davies, “Coherent Optical-Fiber Sensors with Modulated Laser Sources,” Electron. Lett. 19, 14 (1983).
    [CrossRef]
  9. G. Beheim, “Remote Displacement Measurements Using a Laser Diode,” Electron. Lett. 21, 93 (1985).
    [CrossRef]
  10. K. Tatsuno, Y. Tsunoda, “Diode Laser Direct Modulation Heterodyne Interferometer,” Appl. Opt. 26, 37 (1987).
    [CrossRef] [PubMed]

1987 (1)

1986 (1)

1985 (1)

G. Beheim, “Remote Displacement Measurements Using a Laser Diode,” Electron. Lett. 21, 93 (1985).
[CrossRef]

1983 (2)

M. Corke, A. D. Kersey, D. A. Jackson, J. D. C. Jones, “All-Fiber Michelson Thermometer,” Electron. Lett. 19, 471 (1983).
[CrossRef]

I. P. Giles, D. Uttam, B. Culshaw, D. E. N. Davies, “Coherent Optical-Fiber Sensors with Modulated Laser Sources,” Electron. Lett. 19, 14 (1983).
[CrossRef]

1982 (1)

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

1981 (1)

1979 (1)

Beheim, G.

G. Beheim, “Remote Displacement Measurements Using a Laser Diode,” Electron. Lett. 21, 93 (1985).
[CrossRef]

Benedict, R. P.

R. P. Benedict, Fundamentals of Temperature, Pressure, and Flow Measurements (Wiley, New York, 1969).

Born, M.

M. Born, E. Wolf, Principle of Optics (Pergamon, Oxford, 1980).

Bucaro, J. A.

Corke, M.

M. Corke, A. D. Kersey, D. A. Jackson, J. D. C. Jones, “All-Fiber Michelson Thermometer,” Electron. Lett. 19, 471 (1983).
[CrossRef]

Culshaw, B.

I. P. Giles, D. Uttam, B. Culshaw, D. E. N. Davies, “Coherent Optical-Fiber Sensors with Modulated Laser Sources,” Electron. Lett. 19, 14 (1983).
[CrossRef]

Davies, D. E. N.

I. P. Giles, D. Uttam, B. Culshaw, D. E. N. Davies, “Coherent Optical-Fiber Sensors with Modulated Laser Sources,” Electron. Lett. 19, 14 (1983).
[CrossRef]

Giles, I. P.

I. P. Giles, D. Uttam, B. Culshaw, D. E. N. Davies, “Coherent Optical-Fiber Sensors with Modulated Laser Sources,” Electron. Lett. 19, 14 (1983).
[CrossRef]

Hocker, G. B.

Ito, T.

Itoh, K.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Jackson, D. A.

M. Corke, A. D. Kersey, D. A. Jackson, J. D. C. Jones, “All-Fiber Michelson Thermometer,” Electron. Lett. 19, 471 (1983).
[CrossRef]

Jarzynski, J.

Jones, J. D. C.

M. Corke, A. D. Kersey, D. A. Jackson, J. D. C. Jones, “All-Fiber Michelson Thermometer,” Electron. Lett. 19, 471 (1983).
[CrossRef]

Kersey, A. D.

M. Corke, A. D. Kersey, D. A. Jackson, J. D. C. Jones, “All-Fiber Michelson Thermometer,” Electron. Lett. 19, 471 (1983).
[CrossRef]

Kurosawa, K.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Lagakos, N.

Ose, T.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Tatsuno, K.

Tsunoda, Y.

Uttam, D.

I. P. Giles, D. Uttam, B. Culshaw, D. E. N. Davies, “Coherent Optical-Fiber Sensors with Modulated Laser Sources,” Electron. Lett. 19, 14 (1983).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principle of Optics (Pergamon, Oxford, 1980).

Yoshino, T.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Appl. Opt. (4)

Electron. Lett. (3)

M. Corke, A. D. Kersey, D. A. Jackson, J. D. C. Jones, “All-Fiber Michelson Thermometer,” Electron. Lett. 19, 471 (1983).
[CrossRef]

I. P. Giles, D. Uttam, B. Culshaw, D. E. N. Davies, “Coherent Optical-Fiber Sensors with Modulated Laser Sources,” Electron. Lett. 19, 14 (1983).
[CrossRef]

G. Beheim, “Remote Displacement Measurements Using a Laser Diode,” Electron. Lett. 21, 93 (1985).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Other (2)

M. Born, E. Wolf, Principle of Optics (Pergamon, Oxford, 1980).

R. P. Benedict, Fundamentals of Temperature, Pressure, and Flow Measurements (Wiley, New York, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Total phase delay and the corresponding transmitted F.P. fiber sensor output signal: ϕr(t) is a symmetry triangle waveform with period τ. In (a) ϕs(t) = 0, and in (c) ϕs increases linearly with time; (b) and (d) depict the corresponding transmitted optical output signals.

Fig. 2
Fig. 2

Experimental setup for F.P. optical fiber sensor.

Fig. 3
Fig. 3

Results of the optical fiber temperature sensor (solid line) are compared with the results from a type J thermocouple (dots).

Fig. 4
Fig. 4

Number of fringes as a function of temperature.

Fig. 5
Fig. 5

|(Δϕs)/(Δtfr)| vs time immediately after the removal of a hot soldering iron.

Fig. 6
Fig. 6

(a) Data recorded by a strip chart recorder showing the fringes immediately following the removal of a heat source (hot soldering iron) from the sensing region and (b) the corresponding simulated result.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I t I i = ( 1 r 2 ) 2 exp ( 2 α L ) [ 1 r 2 exp ( 2 α L ) ] 2 + 4 r 2 exp ( 2 α L ) sin 2 ϕ ,
I r I i = r 2 [ 1 exp ( 2 α L ) ] 2 + 4 exp ( 2 α L ) sin 2 ϕ [ 1 r 2 exp ( 2 α L ) ] 2 + 4 r 2 exp ( 2 α L ) sin 2 ϕ .
ϕ r ( t ) ϕ r ( 0 ) = C f ( t ) = C { 2 t τ 0 t τ / 2 , 2 τ ( τ t ) τ / 2 t τ ,
t r f r = π .
t 1 ( f r + f s 1 ) = ± π for f r f s 1 .
t 2 ( f r f s 2 ) = ± π for f r f s 2 .
f s 1 f r = ( 1 t r t 1 ) for f r f s 1
f s 2 f r = 1 t r t 2 for f r f s 2
t 1 f s 1 = π ( t 1 t r 1 ) for f r f s 1
t 2 f s 2 = π ( t 2 t r 1 ) for f r f s 2 .
T ( t ) = T f + ( T i T f ) exp ( t / τ t ) ,
C = ( τ / 2 t r ) π = 2 . 983 π ,
ϕ r ( t ) ϕ r ( 0 ) = 2 . 983 π f ( t ) ,
ϕ ( t ) ϕ ( 0 ) = 2 . 983 π { f ( t ) 4 × 0 . 845 × τ t × [ 1 exp ( t / τ t ) ] } ,
| d f ( t ) d t | = 4 for 0 < τ / 2 , | Δ ϕ s ( t ) Δ t f r | = 0 . 845 for t 0 + .

Metrics