Abstract

Analytic ray-tracing formulas provide a rapid means of tracing rays, including skew rays, in a radial gradient. A fifth-order formula for the ray position and direction and a fourth-order formula for the optical path length give sufficiently accurate results for various applications.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Streifer, K. B. Paxton, “Analytic Solution of Ray Equations in Cylindrically Inhomogeneous Guiding Media. 1: Meridional Rays,” Appl. Opt. 10, 769 (1971).
    [CrossRef] [PubMed]
  2. K. B. Paxton, W. Streifer, “Analytic Solutions of Ray Equations in Cylindrically Inhomogeneous Guiding Media. 2: Skew Rays,” Appl. Opt. 10, 1164 (1971).
    [CrossRef] [PubMed]
  3. E. W. Marchand, “Fifth-Order Analysis of GRIN Lenses,” Appl. Opt. 24, 4371 (1985). Note that in Ref. 3 Eq. (A6) should read E1 = (3E0 + A2)/4, and Eq. (A9) should read M4i = (2Ai+1 + Ci+1 − 3Di)/8.
    [CrossRef] [PubMed]
  4. E. W. Marchand, “Aberrations of Wood and GRIN Rod Lenses,” Appl. Opt. 25, 3413 (1986).
    [CrossRef] [PubMed]
  5. T. Sakamoto, “Estimation of the Fourth-Order Index Coefficient of GRIN-Rod Lenses,” Appl. Opt. 25, 2613 (1986).
    [CrossRef] [PubMed]

1986 (2)

1985 (1)

1971 (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (31)

Equations on this page are rendered with MathJax. Learn more.

X = g x , Y = g y , Z = g z , R 2 = X 2 + Y 2
n 2 = N 0 2 ( 1 + e R 2 + h 4 R 4 + h 6 R 6 + ) .
t = N 0 g / l 0 ,
l = n cos γ = l 0 = n 0 cos γ 0 ,
U = X = d X / d t = p / N 0 , V = Y = d Y / d t = q / N 0 ,
X e X = X ( 2 h 4 R 2 + 3 h 6 R 4 + ) , Y e Y = Y ( 2 h 4 R 2 + 3 h 6 R 4 + ) .
X = X 0 c + U 0 s + 2 h 4 ( X 0 W 1 + U 0 W 2 ) , Y = Y 0 c + V 0 s + 2 h 4 ( Y 0 W 1 + V 0 W 2 ) , R 2 = X 2 + Y 2 ,
c = cos t , s = sin t , W 1 = M 1 u + M 2 υ + M 3 w , W 2 = M 2 u + M 3 υ + M 4 w , u = X 0 2 + Y 0 2 , υ = 2 ( X 0 U 0 + Y 0 V 0 ) , w = U 0 2 + V 0 2 .
L = 0 σ n d σ = 1 l 0 0 z n 2 d z = 1 N 0 g 0 t n 2 d t = N 0 g ( t 0 t R 2 d t + h 4 0 t R 4 d t + ) .
L = N 0 g { t ( A 0 + s 2 υ / 2 + B 0 w ) 4 h 4 K + h 4 [ A 1 u 2 + A 3 υ 2 + A 5 w 2 + 2 ( A 2 u υ + A 3 u w + A 4 υ w ) ] } ,
X = X 0 A + U 0 B , Y = Y 0 A + V 0 B , U = X 0 A + U 0 B , V = Y 0 A + V 0 B ,
l 2 = n 2 p 2 q 2 = l 0 2 , E = x q y p = E 0 .
X = U , Y = V , U = X ( e + 2 h 4 R 2 + 3 h 6 R 4 + ) , V = Y ( e + 2 h 4 R 2 + 3 h 6 R 4 + ) , L = N 0 g ( 1 + e R 2 + h 4 R 4 + h 6 R 6 + ) ,
e = 1 , N 0 = 1 . 5 , g = 2 π / 67 , h 4 = 2 / 3 , h 6 = 17 / 45 .
x 0 = y 0 = 0 . 1 , p 0 = 0 . 12 , q 0 = 0 . 13 , z = 10 ,
x , y 0 . 750554325 0 . 808204373 , p , q 0 . 0594095553 0 . 0653051455 , L 15 . 0364008 , l 2 l 0 2 = 10 9 E E 0 = 10 11 .
x , y 0 . 750554318 0 . 808204314 , p , q 0 . 0594095443 0 . 0653051336 , L 15 . 0364002 , l 2 l 0 2 = 10 11 E E 0 = 10 12 .
A 0 = 0 t c 2 d t , B 0 = 0 t s 2 d t , A 1 = 0 t c 4 d t , A 2 = 0 t c 3 s d t , , A 5 = 0 t s 4 d t , C 1 = 0 t c 6 d t , C 2 = 0 t c 5 s d t , , C 7 = 0 t s 6 d t .
A 1 = ( c 3 s + 3 A 0 ) / 4 , A 0 = ( t + c s ) / 2 , A 2 = ( 1 c 4 ) / 4 , B 0 = ( t c s ) / 2 , A 3 = A 0 A 1 , A 4 = s 4 / 4 , A 5 = ( 3 B 0 c s 3 ) / 4 ,
C 1 = ( c 5 s + 5 A 1 ) / 6 , C 2 = ( 1 c 6 ) / 6 , C i + 2 = A i C i , ( i = 1 5 ) .
E 0 = 0 t A 0 d t , F 0 = 0 t B 0 d t , E i = 0 t A i d t , ( i = 1 5 ) ,
E 1 = ( 3 E 0 + A 2 ) / 4 , E 0 = t 2 + s 2 ) / 4 , E 2 = ( t A 1 ) / 4 , F 0 = ( t 2 s 2 ) / 4 . E 3 = E 0 E 1 , E 4 = A 5 / 4 , E 5 = ( 3 F 0 A 4 ) / 4 .
M i = s A i c A i + 1 , ( i = 1 5 ) D i = t A i E i , ( i = 1 5 ) N i = s C i c C i + 1 , ( i = 1 7 ) ,
M i 1 = 0 t c 3 M i , M i 2 = 0 t c 2 s M i , ,
M 1 j = ( 3 D j + 1 + C j + 2 ) / 8 , M 2 j = ( A j + 1 + C j + 3 D j ) / 8 , M 3 j = ( D j + 1 C j + 2 ) / 8 , M 4 j = ( 2 A j + 1 + C j + 1 3 D j ) / 8 .
p i j = M i j + M i , j + 2 ( i = 1 4 , j = 1 2 ) , l i j = u p i j + υ p i + 1 , j + w p i + 2 , j ( i j = 1 2 ) .
K = u l 11 + ( l 12 + l 21 ) υ / 2 + w l 22 .
W i = u M i + υ M i + 1 + w M i + 2 ( i = 1 2 ) , H i = N i u 2 + N i + 2 υ 2 + N i + 4 w 2 ( i = 1 2 ) , K i = N i + 1 u υ + N i + 2 u w + N i + 3 υ w ( i = 1 2 ) , q i j = s M i j c M i , j + 1 ( i = 1 4 , j = 1 3 ) , S i j = u q i j + υ q i + 1 , j + w q i + 2 , j ( i = 1 2 , j = 1 3 ) .
h 1 = 2 h 4 , h 2 = h 1 2 , h 3 = 2 h 2 , h 5 = 3 h 6 , υ 3 = υ / 2 .
A = c + h 1 W 1 + h 2 ( u S 11 + υ S 12 + w S 13 ) + h 3 ( u S 11 + υ 3 ( S 12 + S 21 ) + w S 22 ) + h 5 ( H 1 + 2 K 1 ) ,
B = s + h 1 W 2 + h 2 ( u S 21 + υ S 22 + w S 23 ) + h 3 [ u S 12 + υ 3 ( S 13 + S 22 ) + w S 23 ] + h 5 ( H 2 + 2 K 2 ) .

Metrics