Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Killinger, N. Menyuk, W. E. DeFeo, “Experimental Comparison of Heterodyne and Direct Detection for Pulsed Differential Absorption CO2 Lidar,” Appl. Opt. 22, 682 (1983).
    [CrossRef] [PubMed]
  2. P. Richter, I. Peczely, F. Engard, “Removal of Signal Averaging Limitations in Laser Remote Sensing Measurements,” Opt. Quantum Electron. 16, 187 (1984).
    [CrossRef]
  3. N. Menyuk, D. K. Killinger, “Temporal Correlation of Pulsed Dual CO2 Lidar Returns,” Opt. Lett. 6, 301 (1981).
    [CrossRef] [PubMed]
  4. T. Fukuda, Y. Matsuura, T. Mori, “Sensitivity of Coherent Range-Resolved Differential Absorption Lidar,” Appl. Opt. 23, 2026 (1987).
    [CrossRef]
  5. R. M. Hardesty, “Measurement of Range-Resolved Water Vapor Concentration by Coherent CO2 Differential Absorption Lidar,” NOAA Tech. Memo WPL-118, Boulder, CO (Mar.1984).
  6. H. Goldstein, “The Origins of Echo Fluctuations,” in Propagation of Short Radio Waves, D. E. Kerr, Ed. (McGraw-Hill, New York, 1951).
  7. J. S. Marshall, W. Hitschfeld, “Interpretation of the Fluctuating Echo from Randomly Distributed Scatterers: Part I,” Can. J. Phys. 31, 962 (1953).
    [CrossRef]
  8. P. R. Wallace, “Interpretation of the Fluctuating Echo from Randomly Distributed Scatterers: II,” Can. J. Phys. 31, 995 (1953).
    [CrossRef]
  9. F. E. Nathanson, J. P. Reilly, “Radar Precipitation Echoes,” IEEE Trans. Aerosp. Electron. Syst. AES-4, 505 (1968).
    [CrossRef]
  10. L. J. Waite, “Design of a Heterodyne Lidar System for Remote Sensing of the Atmospheric Boundary Layer,” M. S. Thesis, U. Arizona (1984).

1987

1984

P. Richter, I. Peczely, F. Engard, “Removal of Signal Averaging Limitations in Laser Remote Sensing Measurements,” Opt. Quantum Electron. 16, 187 (1984).
[CrossRef]

1983

1981

1968

F. E. Nathanson, J. P. Reilly, “Radar Precipitation Echoes,” IEEE Trans. Aerosp. Electron. Syst. AES-4, 505 (1968).
[CrossRef]

1953

J. S. Marshall, W. Hitschfeld, “Interpretation of the Fluctuating Echo from Randomly Distributed Scatterers: Part I,” Can. J. Phys. 31, 962 (1953).
[CrossRef]

P. R. Wallace, “Interpretation of the Fluctuating Echo from Randomly Distributed Scatterers: II,” Can. J. Phys. 31, 995 (1953).
[CrossRef]

DeFeo, W. E.

Engard, F.

P. Richter, I. Peczely, F. Engard, “Removal of Signal Averaging Limitations in Laser Remote Sensing Measurements,” Opt. Quantum Electron. 16, 187 (1984).
[CrossRef]

Fukuda, T.

Goldstein, H.

H. Goldstein, “The Origins of Echo Fluctuations,” in Propagation of Short Radio Waves, D. E. Kerr, Ed. (McGraw-Hill, New York, 1951).

Hardesty, R. M.

R. M. Hardesty, “Measurement of Range-Resolved Water Vapor Concentration by Coherent CO2 Differential Absorption Lidar,” NOAA Tech. Memo WPL-118, Boulder, CO (Mar.1984).

Hitschfeld, W.

J. S. Marshall, W. Hitschfeld, “Interpretation of the Fluctuating Echo from Randomly Distributed Scatterers: Part I,” Can. J. Phys. 31, 962 (1953).
[CrossRef]

Killinger, D. K.

Marshall, J. S.

J. S. Marshall, W. Hitschfeld, “Interpretation of the Fluctuating Echo from Randomly Distributed Scatterers: Part I,” Can. J. Phys. 31, 962 (1953).
[CrossRef]

Matsuura, Y.

Menyuk, N.

Mori, T.

Nathanson, F. E.

F. E. Nathanson, J. P. Reilly, “Radar Precipitation Echoes,” IEEE Trans. Aerosp. Electron. Syst. AES-4, 505 (1968).
[CrossRef]

Peczely, I.

P. Richter, I. Peczely, F. Engard, “Removal of Signal Averaging Limitations in Laser Remote Sensing Measurements,” Opt. Quantum Electron. 16, 187 (1984).
[CrossRef]

Reilly, J. P.

F. E. Nathanson, J. P. Reilly, “Radar Precipitation Echoes,” IEEE Trans. Aerosp. Electron. Syst. AES-4, 505 (1968).
[CrossRef]

Richter, P.

P. Richter, I. Peczely, F. Engard, “Removal of Signal Averaging Limitations in Laser Remote Sensing Measurements,” Opt. Quantum Electron. 16, 187 (1984).
[CrossRef]

Waite, L. J.

L. J. Waite, “Design of a Heterodyne Lidar System for Remote Sensing of the Atmospheric Boundary Layer,” M. S. Thesis, U. Arizona (1984).

Wallace, P. R.

P. R. Wallace, “Interpretation of the Fluctuating Echo from Randomly Distributed Scatterers: II,” Can. J. Phys. 31, 995 (1953).
[CrossRef]

Appl. Opt.

Can. J. Phys.

J. S. Marshall, W. Hitschfeld, “Interpretation of the Fluctuating Echo from Randomly Distributed Scatterers: Part I,” Can. J. Phys. 31, 962 (1953).
[CrossRef]

P. R. Wallace, “Interpretation of the Fluctuating Echo from Randomly Distributed Scatterers: II,” Can. J. Phys. 31, 995 (1953).
[CrossRef]

IEEE Trans. Aerosp. Electron. Syst.

F. E. Nathanson, J. P. Reilly, “Radar Precipitation Echoes,” IEEE Trans. Aerosp. Electron. Syst. AES-4, 505 (1968).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

P. Richter, I. Peczely, F. Engard, “Removal of Signal Averaging Limitations in Laser Remote Sensing Measurements,” Opt. Quantum Electron. 16, 187 (1984).
[CrossRef]

Other

R. M. Hardesty, “Measurement of Range-Resolved Water Vapor Concentration by Coherent CO2 Differential Absorption Lidar,” NOAA Tech. Memo WPL-118, Boulder, CO (Mar.1984).

H. Goldstein, “The Origins of Echo Fluctuations,” in Propagation of Short Radio Waves, D. E. Kerr, Ed. (McGraw-Hill, New York, 1951).

L. J. Waite, “Design of a Heterodyne Lidar System for Remote Sensing of the Atmospheric Boundary Layer,” M. S. Thesis, U. Arizona (1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Portions of the illuminated volume (slices) contributing to the signal field of phase θi at frequence ν1 and of the same phase at higher frequency ν2. In this example, frequency increases by one the number of wavelengths contained within the pulse length (after Marshall and Hitschfeld7).

Fig. 2
Fig. 2

Experimental apparatus designed to demonstrate the frequency diversity concept in the laboratory environment.

Fig. 3
Fig. 3

Conceptual block diagram of a simple coherent lidar system utilizing the frequency diversity concept.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ζ = I ¯ 1 I ¯ 2 ( I ¯ 2 ) 2 I ¯ 2 2 ( I ¯ 2 ) 2 ,
ρ ( τ Δ ν ) = r = ( sin π τ Δ ν π τ Δ ν ) 2 .

Metrics