Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Hovis et al., “Nimbus-7 Coastal Zone Color Scanner: System Description and Initial Imagery,” Science 210, 60 (1980).
    [CrossRef] [PubMed]
  2. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton Pigment Concentrations in the Middle Atlantic Bight: Comparison of Ship Determinations and CZCS Estimates,” Appl. Opt. 22, 20 (1983).
    [CrossRef] [PubMed]
  3. R. W. Austin, T. J. Petzold, “The Determination of the Diffuse Attenuation Coefficient of Sea Water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, Ed. (Plenum, New York, 1981), pp. 239–256.
    [CrossRef]

1983 (1)

1980 (1)

W. A. Hovis et al., “Nimbus-7 Coastal Zone Color Scanner: System Description and Initial Imagery,” Science 210, 60 (1980).
[CrossRef] [PubMed]

Austin, R. W.

R. W. Austin, T. J. Petzold, “The Determination of the Diffuse Attenuation Coefficient of Sea Water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, Ed. (Plenum, New York, 1981), pp. 239–256.
[CrossRef]

Broenkow, W. W.

Brown, J. W.

Brown, O. B.

Clark, D. K.

Evans, R. H.

Gordon, H. R.

Hovis, W. A.

W. A. Hovis et al., “Nimbus-7 Coastal Zone Color Scanner: System Description and Initial Imagery,” Science 210, 60 (1980).
[CrossRef] [PubMed]

Petzold, T. J.

R. W. Austin, T. J. Petzold, “The Determination of the Diffuse Attenuation Coefficient of Sea Water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, Ed. (Plenum, New York, 1981), pp. 239–256.
[CrossRef]

Appl. Opt. (1)

Science (1)

W. A. Hovis et al., “Nimbus-7 Coastal Zone Color Scanner: System Description and Initial Imagery,” Science 210, 60 (1980).
[CrossRef] [PubMed]

Other (1)

R. W. Austin, T. J. Petzold, “The Determination of the Diffuse Attenuation Coefficient of Sea Water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, Ed. (Plenum, New York, 1981), pp. 239–256.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

CZCS scan segment illustrating electronic overshoot effects after viewing bright clouds. Clouds are observed from pixels 600–690, where Lt(750) > 1.7 mW cm−2 sr−1μm−1 and cloud-free waters of the central North Pacific gyre are observed from pixels 690–1000. The curves of (a) show the effects on calibrated radiance in channels 1–4 compared with the unaffected channel 5 radiance. The curves in (b) illustrate effects on calculated water radiances, aerosol radiance, K(490), and C compared with channel 5 radiance. In (b), the units of each variable are arbitrarily scaled and offset to facilitate comparison of the curves. The overshoot distance Yc estimated from this scan segment is marked below the C curve.

Fig. 2
Fig. 2

Dependence of CZCS cloud-induced overshoot distance Yc on weighted cloud brightness ln [ B ¯ i exp ( 0 . 32 i ) ] + ln ( G ). The solid line is the least-squares fit to these data [Eq. (7)]. The dahsed line is calculated using the upper 90% confidence limits of the regression slope and intercept in Eq. (7).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

L w ( λ ) = L t ( λ ) L R ( λ ) S ( λ , 670 ) L a ( 670 ) ,
K ( 490 ) = 0 . 022 + 0 . 0883 { L w ( 550 ) L w ( 443 ) } 1 . 491 ,
C = { 1 . 129 { L w ( 550 ) L w ( 443 ) } 1 . 711 , C 1 . 5 mg m 3 , 3 . 326 { L w ( 550 ) L w ( 520 ) } 2 . 439 , C > 1 . 5 mg m 3 .
B = { [ L t ( 750 ) L 0 ( 750 ) G ] ; L t ( 750 ) > L 0 ( 750 ) G 0 ; L t ( 750 ) L 0 ( 750 ) G
L 0 ( 750 ) = 2 . 45 mW cm 2 sr 1 μ m 1 .
d ξ ( y ) d y = ζ 1 ξ ( y ) + α G B ( y )
ξ ( y ) = ξ ( y 0 ) exp [ ( y y 0 ) / ζ ] + α G exp ( y / ζ ) y 0 y B ( y ) exp ( y / ζ ) d y .
B ¯ i = 1 10 j = 0 9 B ( y e 10 i + j ) , i = 1 5 .
ξ ( y e ) α ζ [ exp ( 10 / ζ ) 1 ] G i = 1 5 B ¯ i exp ( 10 i / ζ ) .
ξ 0 = ξ ( Y c + Y e ) = ξ ( y e ) exp ( Y c / ζ ) .
Y c = A + ζ { ln [ i = 1 5 B ¯ i exp ( 10 i / ζ ) ] + ln ( G ) } .
Y c = 3 . 9 [ ± 9 . 7 ] + 30 . 8 [ ± 3 . 3 ] { ln [ i = 1 5 B ¯ i exp ( 0 . 32 i ) ] + ln ( G ) } .

Metrics