Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Gregory, “Real-Time Pattern Recognition using a Modified Liquid Crystal Television in a Coherent Optical Correlator,” Appl. Opt. 25, 467 (1986).
    [CrossRef] [PubMed]
  2. F. Mok, J. Diep, H. K. Liu, D. Psaltis, “Real-Time Computer Generated Hologram by Means of a Liquid Crystal Television Spatial Light Modulator,” Opt. Lett. 11, 748 (1986).
    [CrossRef] [PubMed]
  3. D. Casasent, S. F. Xia, “Phase Correction of Light Modulators,” Opt. Lett. 11, 398 (1986).
    [CrossRef] [PubMed]
  4. J. L. Horner, P. D. Gianino, “Signal-Dependent Phase Distortion in Optical Correlators,” Appl. Opt. 26, (1987).
    [CrossRef] [PubMed]
  5. J. L. Horner, P. D. Gianino, “Phase-Only Matched Filtering,” Appl. Opt. 23, 812 (1984).
    [CrossRef] [PubMed]
  6. J. L. Horner, J. Leger, “Pattern Recognition with Binary Phase-Only Filters,” Appl. Opt. 24, 609 (1985).
    [CrossRef] [PubMed]
  7. A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, New York, 1984), Chap. 10.

1987

J. L. Horner, P. D. Gianino, “Signal-Dependent Phase Distortion in Optical Correlators,” Appl. Opt. 26, (1987).
[CrossRef] [PubMed]

1986

1985

1984

Casasent, D.

Diep, J.

Gianino, P. D.

J. L. Horner, P. D. Gianino, “Signal-Dependent Phase Distortion in Optical Correlators,” Appl. Opt. 26, (1987).
[CrossRef] [PubMed]

J. L. Horner, P. D. Gianino, “Phase-Only Matched Filtering,” Appl. Opt. 23, 812 (1984).
[CrossRef] [PubMed]

Gregory, D. A.

Horner, J. L.

Leger, J.

Liu, H. K.

Mok, F.

Papoulis, A.

A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, New York, 1984), Chap. 10.

Psaltis, D.

Xia, S. F.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical correlator.

Fig. 2
Fig. 2

(a) Interferogram showing phase nonuniformity of liquid crystal TV device. (b) Physical surface reconstructed from (a).

Fig. 3
Fig. 3

Normalized output signal-to-noise ratio SNR o as a function of the translation τ of the real input signal s(x,y) for (a) the classical matched filter, (b) the phase-only filter, and (c) the binary phase-only filter. k is the maximum value of the phase distortion function ϕ(x,y).

Fig. 4
Fig. 4

Correlation response for the matched filter with 3.7π residual input phase distortion: (a) untranslated real input (τ = 0); (b) τ = 64 pixels; (c) binary phase-only filter, 1.4π residual distortion, τ = 64.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

i ( x , y ) = s ( x τ , y τ ) exp [ j k ϕ ( x , y ) ] + n ( x , y ) ,
H = F T { s ( x , y ) exp [ j k ϕ ( x , y ) ] } = A exp ( i ψ ) .
H = exp ( i ψ )
H = 1 0 < ψ < π
H = 1 π < ψ < 0 .
SNR o = C max / [ i N ( C i < 0 . 5 C max ) 2 / i N N i ] 1 / 2 .

Metrics