Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Marhic, “Hierarchic and Combinatorial Star Couplers,” Opt. Lett. 9, 368 (1984).
    [CrossRef] [PubMed]
  2. A. W. Lohmann, W. Stork, G. Stucke, “Optical Implementation of the Perfect Shuffle,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1985), paper WA3; Appl. Opt. 25, 1530 (1986).
    [PubMed]
  3. A. Lohmann, “What Classical Optics Can Do for the Digital Optical Computer,” Appl. Opt. 25, 1543 (1986).
    [CrossRef] [PubMed]
  4. K.-H. Brenner, A. Huang, “Optical Implementations of the Perfect Shuffle Interconnection,” Appl. Opt. 27, 135 (1988).
    [CrossRef] [PubMed]
  5. H. Bartelt, A. W. Lohmann, “Signal Processing Systems with Dimensional Transducers,” Proc. Soc. Photo-Opt. Instrum. Eng. 373, 3 (1982).
  6. G. Stucke, “A Complete 2D Shuffle/Exchange Stage for Large 1D-Data Arrays,” submitted to Optik (1988).

1988

1986

1984

1982

H. Bartelt, A. W. Lohmann, “Signal Processing Systems with Dimensional Transducers,” Proc. Soc. Photo-Opt. Instrum. Eng. 373, 3 (1982).

Bartelt, H.

H. Bartelt, A. W. Lohmann, “Signal Processing Systems with Dimensional Transducers,” Proc. Soc. Photo-Opt. Instrum. Eng. 373, 3 (1982).

Brenner, K.-H.

Huang, A.

Lohmann, A.

Lohmann, A. W.

H. Bartelt, A. W. Lohmann, “Signal Processing Systems with Dimensional Transducers,” Proc. Soc. Photo-Opt. Instrum. Eng. 373, 3 (1982).

A. W. Lohmann, W. Stork, G. Stucke, “Optical Implementation of the Perfect Shuffle,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1985), paper WA3; Appl. Opt. 25, 1530 (1986).
[PubMed]

Marhic, M. E.

Stork, W.

A. W. Lohmann, W. Stork, G. Stucke, “Optical Implementation of the Perfect Shuffle,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1985), paper WA3; Appl. Opt. 25, 1530 (1986).
[PubMed]

Stucke, G.

A. W. Lohmann, W. Stork, G. Stucke, “Optical Implementation of the Perfect Shuffle,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1985), paper WA3; Appl. Opt. 25, 1530 (1986).
[PubMed]

G. Stucke, “A Complete 2D Shuffle/Exchange Stage for Large 1D-Data Arrays,” submitted to Optik (1988).

Appl. Opt.

Opt. Lett.

Proc. Soc. Photo-Opt. Instrum. Eng.

H. Bartelt, A. W. Lohmann, “Signal Processing Systems with Dimensional Transducers,” Proc. Soc. Photo-Opt. Instrum. Eng. 373, 3 (1982).

Other

G. Stucke, “A Complete 2D Shuffle/Exchange Stage for Large 1D-Data Arrays,” submitted to Optik (1988).

A. W. Lohmann, W. Stork, G. Stucke, “Optical Implementation of the Perfect Shuffle,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1985), paper WA3; Appl. Opt. 25, 1530 (1986).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Pattern I(x,y); (b) pattern shifted to the right by one position; (c) pattern shifted cyclically.

Fig. 2
Fig. 2

Michelson version of a cyclic shifter. Two replicas of the input are produced side by side. The amount of shift is determined by the position of the window mask.

Fig. 3
Fig. 3

Spatial filter version of the cyclic shifter.

Fig. 4
Fig. 4

Prismatic version of the cyclic shifter.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = n = 0 N 1 I n ( x , y ) * δ ( x n b + B / 2 ) .
I n ( x , y ) = I n ( x , y ) rect ( x / b ) rect ( y / b ) .
I ( x , y ) = I ( x , y ) rect ( x / B ) ,
I c ( x , y ) = [ I ( x b , y ) + I ( x b + B , y ) ] rect ( x / B ) .
I c , m ( x , y ) = [ I ( x m b , y ) + I ( x m b + B , y ) ] rect ( x / B ) .
I ( x , y ) = ( n , m ) I n m ( x , y ) * * δ ( x n b ) δ ( y m b ) .
I ( x , y ) = I ( x , y ) rect ( x / B ) rect ( y / B ) .
I c ( x , y ) = [ I ( x b , y b ) + I ( x b + B , y b ) + I ( x b , y b + B ) + I ( x b + B , y b + B ) ] rect ( x / B ) rect ( y / B ) .

Metrics