Abstract

We have measured the spectral properties of the fourth anti-Stokes component of the output of a pressurized, molecular hydrogen, Raman shifter pumped by the intense output of a frequency-doubled narrowband pulsed dye laser. All the observed line shapes are asymmetric, with full widths at half-maximum ranging from 0.3 to 0.8 cm−1. The spectral peak of the Raman-shifted light varies linearly with the intensity of the pump light and is given by σ(ρ,I) = σ(ρ) + AI. The previously measured density-dependent Stokes shift is σ(ρ), the intensity of the laser is I, and A is 1.5 ± 0.2 cm−1/(TW/cm2). The electric field-induced shift and asymmetric line shape limit the accuracy and resolution of spectroscopic measurements made with light from a hydrogen Raman shifter. We propose that these observations may be explained by the ac Stark effect in the Raman shifting medium.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. White, “Stimulated Raman Scattering,” in Tunable Lasers, L. F. Mollenauer, J. C. White, Eds. (Springer-Verlag, New York, 1987), pp. 115–207.
  2. G. G. Bret, M. M. Denariez, “Study of Hydrogen Stimulated Raman Emission,” Phys. Lett. 22, 583 (1966).
    [CrossRef]
  3. V. Wilke, W. Schmidt, “Tunable Coherent Radiation Source Covering a Spectral Range from 185 to 880 nm,” Appl. Phys. 18, 177 (1979).
    [CrossRef]
  4. B. P. Stoicheff, “High Resolution Raman Spectroscopy of Gases,” Can. J. Phys. 35, 730 (1957).
    [CrossRef]
  5. J. V. Foltz, D. H. Rank, T. A. Wiggins, “Determinations of Some Hydrogen Molecular Constants,” J. Mol. Spectrosc. 21, 203 (1966).
    [CrossRef]
  6. A. Owyoung, “High-Resolution cw Stimulated Raman Spectroscopy in Molecular Hydrogen,” Opt. Lett. 2, 91 (1978).
    [CrossRef] [PubMed]
  7. H. Zacharias, H. Rottke, K. H. Welge, “Sensitivity and Mass Selectivity of NO Detection by Stepwise Photoionization,” Appl. Phys. 24, 23 (1981).
    [CrossRef]
  8. D. J. Bamford, SRI International, private communication.
  9. R. Mahon, F. S. Tomkins, “Frequency Up-Conversion to the VUV in Hg Vapor,” IEEE J. Quantum Electron. QE-18, 913 (1982).
    [CrossRef]
  10. S. Gerstenkorn, P. Luc, Atlas du Spectre D’adsorption de la Molecule D’iode (Editions du Centre National de la Recherche Scientifique, Paris, 1978); “Absolute Iodine (I2) Standards Measured by Means of Fourier Transform Spectroscopy,” Rev. Phys. Appl. 14, 791 (1979).
  11. J. F. Kelly, J. P. Hessler, G. Alber, “Experimental Studies of Three-Photon Ionization of Ba: Evidence of Channel Interference and Raman Coupling,” Phys. Rev. A 33, 3913 (1986).
    [CrossRef] [PubMed]
  12. K. Yoshino, D. E. Freeman, “Absorption Spectrum of Xenon in the Vacuum-Ultraviolet Region,” J. Opt. Soc. Am. B 2, 1268 (1985).
    [CrossRef]
  13. W. K. Bischel, B. E. Perry, D. R. Crosley, “Detection of Fluorescence from O and N Atoms Induced by Two-Photon Absorption,” Appl. Opt. 21, 1419 (1982).
    [CrossRef] [PubMed]
  14. A. P. Hickman, J. A. Paisner, W. K. Bischel, “Theory of Multiwave Propagation and Frequency Conversion in a Raman Medium,” Phys. Rev. A 33, 1788 (1986).
    [CrossRef] [PubMed]
  15. L. A. Rahn, R. L. Farrow, M. L. Koszykowski, P. L. Mattern, “Observation of an Optical Stark Effect on Vibrational and Rotational Transitions,” Phys. Rev. Lett. 45, 620 (1980).
    [CrossRef]
  16. R. L. Farrow, L. A. Rahn, “Optical Stark Splitting of Rotational Raman Transitions,” Phys. Rev. Lett. 48, 395 (1982).
    [CrossRef]
  17. R. A. Hill, A. Owyoung, P. Esherick, “Optical Stark Effects in the Stimulated Raman Spectrum of Molecular Oxygen,” J. Mol. Spectrosc. 112, 233 (1985).
    [CrossRef]
  18. W. K. Bischel, M. J. Dyer, “Wavelength Dependence of the Absolute Raman Gain Coefficient for the Q(1) Transition in H2,” J. Opt. Soc. Am. B 3, 677 (1986).
    [CrossRef]

1986 (3)

J. F. Kelly, J. P. Hessler, G. Alber, “Experimental Studies of Three-Photon Ionization of Ba: Evidence of Channel Interference and Raman Coupling,” Phys. Rev. A 33, 3913 (1986).
[CrossRef] [PubMed]

A. P. Hickman, J. A. Paisner, W. K. Bischel, “Theory of Multiwave Propagation and Frequency Conversion in a Raman Medium,” Phys. Rev. A 33, 1788 (1986).
[CrossRef] [PubMed]

W. K. Bischel, M. J. Dyer, “Wavelength Dependence of the Absolute Raman Gain Coefficient for the Q(1) Transition in H2,” J. Opt. Soc. Am. B 3, 677 (1986).
[CrossRef]

1985 (2)

R. A. Hill, A. Owyoung, P. Esherick, “Optical Stark Effects in the Stimulated Raman Spectrum of Molecular Oxygen,” J. Mol. Spectrosc. 112, 233 (1985).
[CrossRef]

K. Yoshino, D. E. Freeman, “Absorption Spectrum of Xenon in the Vacuum-Ultraviolet Region,” J. Opt. Soc. Am. B 2, 1268 (1985).
[CrossRef]

1982 (3)

R. L. Farrow, L. A. Rahn, “Optical Stark Splitting of Rotational Raman Transitions,” Phys. Rev. Lett. 48, 395 (1982).
[CrossRef]

W. K. Bischel, B. E. Perry, D. R. Crosley, “Detection of Fluorescence from O and N Atoms Induced by Two-Photon Absorption,” Appl. Opt. 21, 1419 (1982).
[CrossRef] [PubMed]

R. Mahon, F. S. Tomkins, “Frequency Up-Conversion to the VUV in Hg Vapor,” IEEE J. Quantum Electron. QE-18, 913 (1982).
[CrossRef]

1981 (1)

H. Zacharias, H. Rottke, K. H. Welge, “Sensitivity and Mass Selectivity of NO Detection by Stepwise Photoionization,” Appl. Phys. 24, 23 (1981).
[CrossRef]

1980 (1)

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, P. L. Mattern, “Observation of an Optical Stark Effect on Vibrational and Rotational Transitions,” Phys. Rev. Lett. 45, 620 (1980).
[CrossRef]

1979 (1)

V. Wilke, W. Schmidt, “Tunable Coherent Radiation Source Covering a Spectral Range from 185 to 880 nm,” Appl. Phys. 18, 177 (1979).
[CrossRef]

1978 (1)

1966 (2)

G. G. Bret, M. M. Denariez, “Study of Hydrogen Stimulated Raman Emission,” Phys. Lett. 22, 583 (1966).
[CrossRef]

J. V. Foltz, D. H. Rank, T. A. Wiggins, “Determinations of Some Hydrogen Molecular Constants,” J. Mol. Spectrosc. 21, 203 (1966).
[CrossRef]

1957 (1)

B. P. Stoicheff, “High Resolution Raman Spectroscopy of Gases,” Can. J. Phys. 35, 730 (1957).
[CrossRef]

Alber, G.

J. F. Kelly, J. P. Hessler, G. Alber, “Experimental Studies of Three-Photon Ionization of Ba: Evidence of Channel Interference and Raman Coupling,” Phys. Rev. A 33, 3913 (1986).
[CrossRef] [PubMed]

Bamford, D. J.

D. J. Bamford, SRI International, private communication.

Bischel, W. K.

Bret, G. G.

G. G. Bret, M. M. Denariez, “Study of Hydrogen Stimulated Raman Emission,” Phys. Lett. 22, 583 (1966).
[CrossRef]

Crosley, D. R.

Denariez, M. M.

G. G. Bret, M. M. Denariez, “Study of Hydrogen Stimulated Raman Emission,” Phys. Lett. 22, 583 (1966).
[CrossRef]

Dyer, M. J.

Esherick, P.

R. A. Hill, A. Owyoung, P. Esherick, “Optical Stark Effects in the Stimulated Raman Spectrum of Molecular Oxygen,” J. Mol. Spectrosc. 112, 233 (1985).
[CrossRef]

Farrow, R. L.

R. L. Farrow, L. A. Rahn, “Optical Stark Splitting of Rotational Raman Transitions,” Phys. Rev. Lett. 48, 395 (1982).
[CrossRef]

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, P. L. Mattern, “Observation of an Optical Stark Effect on Vibrational and Rotational Transitions,” Phys. Rev. Lett. 45, 620 (1980).
[CrossRef]

Foltz, J. V.

J. V. Foltz, D. H. Rank, T. A. Wiggins, “Determinations of Some Hydrogen Molecular Constants,” J. Mol. Spectrosc. 21, 203 (1966).
[CrossRef]

Freeman, D. E.

Gerstenkorn, S.

S. Gerstenkorn, P. Luc, Atlas du Spectre D’adsorption de la Molecule D’iode (Editions du Centre National de la Recherche Scientifique, Paris, 1978); “Absolute Iodine (I2) Standards Measured by Means of Fourier Transform Spectroscopy,” Rev. Phys. Appl. 14, 791 (1979).

Hessler, J. P.

J. F. Kelly, J. P. Hessler, G. Alber, “Experimental Studies of Three-Photon Ionization of Ba: Evidence of Channel Interference and Raman Coupling,” Phys. Rev. A 33, 3913 (1986).
[CrossRef] [PubMed]

Hickman, A. P.

A. P. Hickman, J. A. Paisner, W. K. Bischel, “Theory of Multiwave Propagation and Frequency Conversion in a Raman Medium,” Phys. Rev. A 33, 1788 (1986).
[CrossRef] [PubMed]

Hill, R. A.

R. A. Hill, A. Owyoung, P. Esherick, “Optical Stark Effects in the Stimulated Raman Spectrum of Molecular Oxygen,” J. Mol. Spectrosc. 112, 233 (1985).
[CrossRef]

Kelly, J. F.

J. F. Kelly, J. P. Hessler, G. Alber, “Experimental Studies of Three-Photon Ionization of Ba: Evidence of Channel Interference and Raman Coupling,” Phys. Rev. A 33, 3913 (1986).
[CrossRef] [PubMed]

Koszykowski, M. L.

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, P. L. Mattern, “Observation of an Optical Stark Effect on Vibrational and Rotational Transitions,” Phys. Rev. Lett. 45, 620 (1980).
[CrossRef]

Luc, P.

S. Gerstenkorn, P. Luc, Atlas du Spectre D’adsorption de la Molecule D’iode (Editions du Centre National de la Recherche Scientifique, Paris, 1978); “Absolute Iodine (I2) Standards Measured by Means of Fourier Transform Spectroscopy,” Rev. Phys. Appl. 14, 791 (1979).

Mahon, R.

R. Mahon, F. S. Tomkins, “Frequency Up-Conversion to the VUV in Hg Vapor,” IEEE J. Quantum Electron. QE-18, 913 (1982).
[CrossRef]

Mattern, P. L.

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, P. L. Mattern, “Observation of an Optical Stark Effect on Vibrational and Rotational Transitions,” Phys. Rev. Lett. 45, 620 (1980).
[CrossRef]

Owyoung, A.

R. A. Hill, A. Owyoung, P. Esherick, “Optical Stark Effects in the Stimulated Raman Spectrum of Molecular Oxygen,” J. Mol. Spectrosc. 112, 233 (1985).
[CrossRef]

A. Owyoung, “High-Resolution cw Stimulated Raman Spectroscopy in Molecular Hydrogen,” Opt. Lett. 2, 91 (1978).
[CrossRef] [PubMed]

Paisner, J. A.

A. P. Hickman, J. A. Paisner, W. K. Bischel, “Theory of Multiwave Propagation and Frequency Conversion in a Raman Medium,” Phys. Rev. A 33, 1788 (1986).
[CrossRef] [PubMed]

Perry, B. E.

Rahn, L. A.

R. L. Farrow, L. A. Rahn, “Optical Stark Splitting of Rotational Raman Transitions,” Phys. Rev. Lett. 48, 395 (1982).
[CrossRef]

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, P. L. Mattern, “Observation of an Optical Stark Effect on Vibrational and Rotational Transitions,” Phys. Rev. Lett. 45, 620 (1980).
[CrossRef]

Rank, D. H.

J. V. Foltz, D. H. Rank, T. A. Wiggins, “Determinations of Some Hydrogen Molecular Constants,” J. Mol. Spectrosc. 21, 203 (1966).
[CrossRef]

Rottke, H.

H. Zacharias, H. Rottke, K. H. Welge, “Sensitivity and Mass Selectivity of NO Detection by Stepwise Photoionization,” Appl. Phys. 24, 23 (1981).
[CrossRef]

Schmidt, W.

V. Wilke, W. Schmidt, “Tunable Coherent Radiation Source Covering a Spectral Range from 185 to 880 nm,” Appl. Phys. 18, 177 (1979).
[CrossRef]

Stoicheff, B. P.

B. P. Stoicheff, “High Resolution Raman Spectroscopy of Gases,” Can. J. Phys. 35, 730 (1957).
[CrossRef]

Tomkins, F. S.

R. Mahon, F. S. Tomkins, “Frequency Up-Conversion to the VUV in Hg Vapor,” IEEE J. Quantum Electron. QE-18, 913 (1982).
[CrossRef]

Welge, K. H.

H. Zacharias, H. Rottke, K. H. Welge, “Sensitivity and Mass Selectivity of NO Detection by Stepwise Photoionization,” Appl. Phys. 24, 23 (1981).
[CrossRef]

White, J. C.

J. C. White, “Stimulated Raman Scattering,” in Tunable Lasers, L. F. Mollenauer, J. C. White, Eds. (Springer-Verlag, New York, 1987), pp. 115–207.

Wiggins, T. A.

J. V. Foltz, D. H. Rank, T. A. Wiggins, “Determinations of Some Hydrogen Molecular Constants,” J. Mol. Spectrosc. 21, 203 (1966).
[CrossRef]

Wilke, V.

V. Wilke, W. Schmidt, “Tunable Coherent Radiation Source Covering a Spectral Range from 185 to 880 nm,” Appl. Phys. 18, 177 (1979).
[CrossRef]

Yoshino, K.

Zacharias, H.

H. Zacharias, H. Rottke, K. H. Welge, “Sensitivity and Mass Selectivity of NO Detection by Stepwise Photoionization,” Appl. Phys. 24, 23 (1981).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (2)

V. Wilke, W. Schmidt, “Tunable Coherent Radiation Source Covering a Spectral Range from 185 to 880 nm,” Appl. Phys. 18, 177 (1979).
[CrossRef]

H. Zacharias, H. Rottke, K. H. Welge, “Sensitivity and Mass Selectivity of NO Detection by Stepwise Photoionization,” Appl. Phys. 24, 23 (1981).
[CrossRef]

Can. J. Phys. (1)

B. P. Stoicheff, “High Resolution Raman Spectroscopy of Gases,” Can. J. Phys. 35, 730 (1957).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Mahon, F. S. Tomkins, “Frequency Up-Conversion to the VUV in Hg Vapor,” IEEE J. Quantum Electron. QE-18, 913 (1982).
[CrossRef]

J. Mol. Spectrosc. (2)

J. V. Foltz, D. H. Rank, T. A. Wiggins, “Determinations of Some Hydrogen Molecular Constants,” J. Mol. Spectrosc. 21, 203 (1966).
[CrossRef]

R. A. Hill, A. Owyoung, P. Esherick, “Optical Stark Effects in the Stimulated Raman Spectrum of Molecular Oxygen,” J. Mol. Spectrosc. 112, 233 (1985).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (1)

Phys. Lett. (1)

G. G. Bret, M. M. Denariez, “Study of Hydrogen Stimulated Raman Emission,” Phys. Lett. 22, 583 (1966).
[CrossRef]

Phys. Rev. A (2)

J. F. Kelly, J. P. Hessler, G. Alber, “Experimental Studies of Three-Photon Ionization of Ba: Evidence of Channel Interference and Raman Coupling,” Phys. Rev. A 33, 3913 (1986).
[CrossRef] [PubMed]

A. P. Hickman, J. A. Paisner, W. K. Bischel, “Theory of Multiwave Propagation and Frequency Conversion in a Raman Medium,” Phys. Rev. A 33, 1788 (1986).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, P. L. Mattern, “Observation of an Optical Stark Effect on Vibrational and Rotational Transitions,” Phys. Rev. Lett. 45, 620 (1980).
[CrossRef]

R. L. Farrow, L. A. Rahn, “Optical Stark Splitting of Rotational Raman Transitions,” Phys. Rev. Lett. 48, 395 (1982).
[CrossRef]

Other (3)

S. Gerstenkorn, P. Luc, Atlas du Spectre D’adsorption de la Molecule D’iode (Editions du Centre National de la Recherche Scientifique, Paris, 1978); “Absolute Iodine (I2) Standards Measured by Means of Fourier Transform Spectroscopy,” Rev. Phys. Appl. 14, 791 (1979).

J. C. White, “Stimulated Raman Scattering,” in Tunable Lasers, L. F. Mollenauer, J. C. White, Eds. (Springer-Verlag, New York, 1987), pp. 115–207.

D. J. Bamford, SRI International, private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram for two-photon excitation of xenon. The scheme on the left was used to measure the precise energy of the 6p[3/2]2 level and the scheme on the right was used to measure the shift and line shape of the fourth anti-Stokes component from a hydrogen Raman shifter.

Fig. 2
Fig. 2

Line shapes of the fourth anti-Stokes component for three different focal lengths with 3-mJ input pulse energy at 320 nm. The horizontal axis is the difference between the observed fourth anti-Stokes shift and that calculated from the Stokes shift of Ref. 5 for our experimental conditions. Solid lines represent data with the fundamental and ultraviolet beams present; dots represent the ultraviolet beam only.

Fig. 3
Fig. 3

Stokes shift (observed shift divided by four) for the three different focal length lenses. The power densities are calculated as described in the text. The arrow at the left of the figure indicates the Stokes shift calculated from the parameters given in Ref. 5.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ ( ρ , I ) = σ ( ρ ) - ( 1.5 ± 0.2 ) I ,
δ σ v = - σ v 3 ( 4 π ɛ 0 ) E 0 2 16 D e β ( d α / d q ) .

Metrics