Abstract

Predetection mixing of the intensity modulation on optical beams is shown to have performance advantages in certain laser radar applications. The method allows detection of signals with high frequency intensity modulation using a low frequency sensor. The method can lead to a signal-to-noise ratio improvement compared to a system using a high frequency sensor. The technique is demonstrated by using a sensor with a 5-kHz cutoff frequency to receive a laser beam intensity modulated at 4 MHz.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Wilson, “Phase Comparison Position-Determining Systems,” in Range Instrumentation, E. H. Ehling, Ed. (Prentice-Hall, Englewood Cliffs, NJ, 1967).
  2. A. Sona, “Lasers in Metrology: Distance Measurements,” in Laser Handbook, Vol. 2, F. T. Arecchi, E. O. Schultz-Dubois, Eds. (Elsevier, New York, 1972).
  3. W. K. Kulczyk, Q. V. Davis, “The Avalanche Photodiode as an Electronic Mixer in an Optical Receiver,” IEEE Trans. Electron Devices ED-19, 1181 (1972).
    [CrossRef]
  4. D. K. W. Lam, R. I. MacDonald, “GaAs Optoelectronic Mixer Operation at 4.5 GHz,” IEEE Trans. Electron Devices ED-31, 1766 (1984).
    [CrossRef]
  5. J. Freedman, “Radar,” in System Engineering Handbook, R. E. Machol, Ed. (McGraw-Hill, New York, 1965).
  6. P. P. Webb, R. J. McIntyre, “Multi-Element Reachthrough Avalanche Photodiodes,” IEEE Trans. Electron Devices ED-31, 1206 (1984).
    [CrossRef]
  7. R. G. Smith, S. D. Personick, “Receiver Design for Optical Fiber Communication Systems,” in Semiconductor Devices for Optical Communication, H. Kressel, Ed. (Springer-Verlag, New York, 1982).
  8. A. Morimoto, T. Kobayashi, T. Sueta, “Active Mode Locking of Lasers Using a Fast Electrooptic Deflector,” IEEE J. Quantum Electron. QE-24, 94 (1988).
    [CrossRef]
  9. R. G. Walker, “High-Speed Electrooptic Modulation in GaAs/GaAlAs Waveguide Devices,” IEEE/OSA J. Lightwave Technol. LT-5, 1444 (1987).
    [CrossRef]

1988

A. Morimoto, T. Kobayashi, T. Sueta, “Active Mode Locking of Lasers Using a Fast Electrooptic Deflector,” IEEE J. Quantum Electron. QE-24, 94 (1988).
[CrossRef]

1987

R. G. Walker, “High-Speed Electrooptic Modulation in GaAs/GaAlAs Waveguide Devices,” IEEE/OSA J. Lightwave Technol. LT-5, 1444 (1987).
[CrossRef]

1984

D. K. W. Lam, R. I. MacDonald, “GaAs Optoelectronic Mixer Operation at 4.5 GHz,” IEEE Trans. Electron Devices ED-31, 1766 (1984).
[CrossRef]

P. P. Webb, R. J. McIntyre, “Multi-Element Reachthrough Avalanche Photodiodes,” IEEE Trans. Electron Devices ED-31, 1206 (1984).
[CrossRef]

1972

W. K. Kulczyk, Q. V. Davis, “The Avalanche Photodiode as an Electronic Mixer in an Optical Receiver,” IEEE Trans. Electron Devices ED-19, 1181 (1972).
[CrossRef]

Davis, Q. V.

W. K. Kulczyk, Q. V. Davis, “The Avalanche Photodiode as an Electronic Mixer in an Optical Receiver,” IEEE Trans. Electron Devices ED-19, 1181 (1972).
[CrossRef]

Freedman, J.

J. Freedman, “Radar,” in System Engineering Handbook, R. E. Machol, Ed. (McGraw-Hill, New York, 1965).

Kobayashi, T.

A. Morimoto, T. Kobayashi, T. Sueta, “Active Mode Locking of Lasers Using a Fast Electrooptic Deflector,” IEEE J. Quantum Electron. QE-24, 94 (1988).
[CrossRef]

Kulczyk, W. K.

W. K. Kulczyk, Q. V. Davis, “The Avalanche Photodiode as an Electronic Mixer in an Optical Receiver,” IEEE Trans. Electron Devices ED-19, 1181 (1972).
[CrossRef]

Lam, D. K. W.

D. K. W. Lam, R. I. MacDonald, “GaAs Optoelectronic Mixer Operation at 4.5 GHz,” IEEE Trans. Electron Devices ED-31, 1766 (1984).
[CrossRef]

MacDonald, R. I.

D. K. W. Lam, R. I. MacDonald, “GaAs Optoelectronic Mixer Operation at 4.5 GHz,” IEEE Trans. Electron Devices ED-31, 1766 (1984).
[CrossRef]

McIntyre, R. J.

P. P. Webb, R. J. McIntyre, “Multi-Element Reachthrough Avalanche Photodiodes,” IEEE Trans. Electron Devices ED-31, 1206 (1984).
[CrossRef]

Morimoto, A.

A. Morimoto, T. Kobayashi, T. Sueta, “Active Mode Locking of Lasers Using a Fast Electrooptic Deflector,” IEEE J. Quantum Electron. QE-24, 94 (1988).
[CrossRef]

Personick, S. D.

R. G. Smith, S. D. Personick, “Receiver Design for Optical Fiber Communication Systems,” in Semiconductor Devices for Optical Communication, H. Kressel, Ed. (Springer-Verlag, New York, 1982).

Smith, R. G.

R. G. Smith, S. D. Personick, “Receiver Design for Optical Fiber Communication Systems,” in Semiconductor Devices for Optical Communication, H. Kressel, Ed. (Springer-Verlag, New York, 1982).

Sona, A.

A. Sona, “Lasers in Metrology: Distance Measurements,” in Laser Handbook, Vol. 2, F. T. Arecchi, E. O. Schultz-Dubois, Eds. (Elsevier, New York, 1972).

Sueta, T.

A. Morimoto, T. Kobayashi, T. Sueta, “Active Mode Locking of Lasers Using a Fast Electrooptic Deflector,” IEEE J. Quantum Electron. QE-24, 94 (1988).
[CrossRef]

Walker, R. G.

R. G. Walker, “High-Speed Electrooptic Modulation in GaAs/GaAlAs Waveguide Devices,” IEEE/OSA J. Lightwave Technol. LT-5, 1444 (1987).
[CrossRef]

Webb, P. P.

P. P. Webb, R. J. McIntyre, “Multi-Element Reachthrough Avalanche Photodiodes,” IEEE Trans. Electron Devices ED-31, 1206 (1984).
[CrossRef]

Wilson, R.

R. Wilson, “Phase Comparison Position-Determining Systems,” in Range Instrumentation, E. H. Ehling, Ed. (Prentice-Hall, Englewood Cliffs, NJ, 1967).

IEEE J. Quantum Electron.

A. Morimoto, T. Kobayashi, T. Sueta, “Active Mode Locking of Lasers Using a Fast Electrooptic Deflector,” IEEE J. Quantum Electron. QE-24, 94 (1988).
[CrossRef]

IEEE Trans. Electron Devices

P. P. Webb, R. J. McIntyre, “Multi-Element Reachthrough Avalanche Photodiodes,” IEEE Trans. Electron Devices ED-31, 1206 (1984).
[CrossRef]

W. K. Kulczyk, Q. V. Davis, “The Avalanche Photodiode as an Electronic Mixer in an Optical Receiver,” IEEE Trans. Electron Devices ED-19, 1181 (1972).
[CrossRef]

D. K. W. Lam, R. I. MacDonald, “GaAs Optoelectronic Mixer Operation at 4.5 GHz,” IEEE Trans. Electron Devices ED-31, 1766 (1984).
[CrossRef]

IEEE/OSA J. Lightwave Technol.

R. G. Walker, “High-Speed Electrooptic Modulation in GaAs/GaAlAs Waveguide Devices,” IEEE/OSA J. Lightwave Technol. LT-5, 1444 (1987).
[CrossRef]

Other

R. G. Smith, S. D. Personick, “Receiver Design for Optical Fiber Communication Systems,” in Semiconductor Devices for Optical Communication, H. Kressel, Ed. (Springer-Verlag, New York, 1982).

J. Freedman, “Radar,” in System Engineering Handbook, R. E. Machol, Ed. (McGraw-Hill, New York, 1965).

R. Wilson, “Phase Comparison Position-Determining Systems,” in Range Instrumentation, E. H. Ehling, Ed. (Prentice-Hall, Englewood Cliffs, NJ, 1967).

A. Sona, “Lasers in Metrology: Distance Measurements,” in Laser Handbook, Vol. 2, F. T. Arecchi, E. O. Schultz-Dubois, Eds. (Elsevier, New York, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Typical laser radar receiver circuit, the transimpedance amplifier. Signal current in the photodiode is converted to an output voltage V.

Fig. 2
Fig. 2

Spectrum analyzer display of the two high frequency components of the doubly intensity modulated optical beam. The detector circuit has its 3-dB cutoff frequency at 5 kHz. The spectrum analyzer horizontal sensitivity is 0.2 kHz/div, vertical sensitivity is 10 dB/div, and reference level is −30 dBm. (a) Laser drive current modulated at 5 kHz and acoustooptic cell modulated at 4 kHz. (b) Laser drive current modulated at 50 kHz and acoustooptic cell modulated at 49 kHz.

Fig. 3
Fig. 3

Spectrum analyzer display of the difference frequency components for the conditions described in Fig. 2. Spectrum analyzer sensitivities are the same as in Fig. 2; (a) and (b) correspond to Figs. 2(a) and (b), respectively.

Fig. 4
Fig. 4

Spectrum analyzer display of the difference frequency output when the laser current is modulated at 4.000 MHz and the acoustooptic cell at 3.999 MHz. Horizontal sensitivity is 0.2 kHz/div, vertical sensitivity is 10 dB/div, and the reference level is −20 dBm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ R = c / ( 4 π f m S / N ) ,
V = - Z f I s ,
f c = 1 / ( 2 π R f C f ) .
i n 2 ¯ = ( 4 k T B ) / R f ,
P t = P 0 [ 1 + cos ( 2 π f m t ) ] ,
P i = ( P r / 2 ) [ 1 + cos ( 2 π f m t ) ] [ 1 + cos ( 2 π f r t ) ] ,
P d = ( P r / 4 ) cos [ 2 π ( f m - f r ) t ] .

Metrics