Abstract

A cryogenic Fourier transform spectrometer has been built to measure thermal emission of the earth’s limb from a balloon-borne platform. Liquid nitrogen cooling of the spectrometer and liquid helium cooling of the detectors has provided sufficient sensitivity to detect, at 5–15 μm, fifteen molecular species relevant to stratospheric ozone chemistry. The spectral resolution achieved, 0.022 cm−1, is the best yet attained for emission mode data at these wavelengths. The philosophy behind the design of the optical and electronic systems is presented, followed by an analysis of the performance achieved during balloon flight.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. World Meteorological Organization, Atmospheric Ozone 1985: Assessment of Our Understanding of the Processes Controlling Its Present Distribution and Change, Report 16 (Global Ozone Research and Monitoring Project, Geneva, 1986).
  2. P. Fabian, J. A. Pyle, R. J. Wells, “Diurnal Variations of Minor Constituents in the Stratosphere Modeled as a Function of Latitude and Season,” Geophys. Res. 87, 4982 (1982).
    [CrossRef]
  3. J. C. Brasunas et al., “Balloon-Borne Cryogenic Spectrometer for Measurement of Lower Stratospheric Trace Constituents,” Proc. Soc. Photo-Opt. Instrum. Eng. 619, 80 (1986).
  4. M. M. Abbas et al., “Thermal Emission Spectroscopy of the Stratosphere from Balloon Platforms,” in Advances in Remote Sensing Retrieval Methods, H. E. Fleming, M. T. Chahine, Eds. (A. Deepak, Hampton, VA, 1985).
  5. M. T. Chahine, “Inverse Problems in Radiative Transfer: Determination of Atmospheric Parameters,” J. Atmos. Sci. 27, 960 (1970).
    [CrossRef]
  6. B. J. Conrath, “Backus-Gilbert Theory and Its Application to Retrieval of Ozone and Temperature Profiles,” in Inversion Methods in Atmospheric Remote Sounding, A. Deepak, Ed. (Academic, New York, 1977).
  7. J. C. Gille, F. B. House, “On the Inversion of Limb Radiance Measurements I: Temperature and Thickness,” J. Atmos. Sci. 28, 1427 (1971).
    [CrossRef]
  8. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), p. 66.
  9. W. H. Steel, Interferometry (Cambridge U. P., London, 1983).
  10. H. L. Buijs, D. Laporte, “Aspects of Dynamically Aligned Fourier Transform Spectrometer Operation at Cryogenic Temperatures,” Proc. Soc. Photo-Opt. Instrum. Eng. 245, 48 (1980).
  11. A. S. Zachor, S. M. Aaronson, “Delay Compensation: Its Effect in Reducing Sampling Errors in Fourier Spectroscopy,” Appl. Opt. 18, 68 (1979).
    [CrossRef] [PubMed]
  12. H. Buijs, “A Class of High Resolution Ruggedized Fourier Transform Spectrometers,” Proc. Soc. Photo-Opt. Instrum. Eng. 191, 116 (1979).
  13. H. L. Buijs, D. J. W. Kendall, G. Vail, J.-N. Berube, “Fourier Transform Infrared Hardware Developments,” Proc. Soc. Photo-Opt. Instrum. Eng. 289, 322 (1981).
  14. C. L. Wyatt, D. J. Baker, D. G. Frodsham, “A Direct Coupled Low Noise Preamplifier for Cryogenically Cooled Photoconductive i.r. Detectors,” Infrared Phys. 14, 165 (1974).
    [CrossRef]
  15. E. L. Dereniak, R. R. Joyce, R. W. Capps, “Low-Noise Preamplifier for Photoconductive Detectors,” Rev. Sci. Instrum. 48, 392 (1977).
    [CrossRef]
  16. A. S. Zachor, I. Coleman, W. G. Mankin, “Effects of Drive Nonlinearities in Fourier Spectrometers,” in Spectrometric Techniques, Vol. 2, G. A. Vanasse, Ed. (Academic, New York, 1981).
  17. H. N. Ballard et al., “Temperature Measurements in the Stratosphere from Balloon-Borne Instrument Platforms 1968–1975,” presented at Ninth AFGL Scientific Balloon Symposium (AFGL-TR-76-3606, 1976).
  18. W. A. Traub, K. V. Chance, L. M. Coyle, “Performance of a Single-Axis Platform for Balloon-Borne Remote Sensing,” Rev. Sci. Instrum. 57, 2519 (1986).
    [CrossRef]
  19. L. M. Coyle et al., “Design of a Single-Axis Platform for Balloon-Borne Remote Sensing,” Rev. Sci. Instrum. 57, 2512 (1986).
    [CrossRef]
  20. M. M. Abbas et al., “Simultaneous Measurements of Stratospheric O3, H2O, CH4 and N2O Profiles from Infrared Limb Thermal Emissions,” J. Geophys. Res. 92, 8343 (1987).
    [CrossRef]
  21. R. A. Hanel, in Advances in Geophysics, Vol. 14, H. E. Landsberg, J. Van Mieghem, Eds. (Academic, New York, 1970).
    [CrossRef]
  22. A. S. Zachor, E. R. Huppi, “Nonlinear Response of Low-Background Extrinsic Silicon Detectors. 1: A Phenomenological Model,” Appl. Opt. 20, 1000 (1981).
    [CrossRef] [PubMed]
  23. A. S. Zachor, E. R. Huppi, I. Coleman, D. G. Frodsham, “Nonlinear Response of Low-Background Extrinsic Silicon Detectors. 2: A Revised Model,” Appl. Opt. 21, 2027 (1982).
    [CrossRef] [PubMed]
  24. V. G. Kunde et al., “Infrared Spectroscopy of the Lower Stratosphere with a Balloon-Borne Cryogenic Fourier Spectrometer,” Appl. Opt. 26, 545 (1987).
    [CrossRef] [PubMed]
  25. S. T. Massie et al., “Atmospheric Infrared Emission of CONO2 Observed by a Balloon-Borne Fourier Spectrometer,” J. Geophys. Res. 92, 14806 (1987).
    [CrossRef]

1987

M. M. Abbas et al., “Simultaneous Measurements of Stratospheric O3, H2O, CH4 and N2O Profiles from Infrared Limb Thermal Emissions,” J. Geophys. Res. 92, 8343 (1987).
[CrossRef]

V. G. Kunde et al., “Infrared Spectroscopy of the Lower Stratosphere with a Balloon-Borne Cryogenic Fourier Spectrometer,” Appl. Opt. 26, 545 (1987).
[CrossRef] [PubMed]

S. T. Massie et al., “Atmospheric Infrared Emission of CONO2 Observed by a Balloon-Borne Fourier Spectrometer,” J. Geophys. Res. 92, 14806 (1987).
[CrossRef]

1986

W. A. Traub, K. V. Chance, L. M. Coyle, “Performance of a Single-Axis Platform for Balloon-Borne Remote Sensing,” Rev. Sci. Instrum. 57, 2519 (1986).
[CrossRef]

L. M. Coyle et al., “Design of a Single-Axis Platform for Balloon-Borne Remote Sensing,” Rev. Sci. Instrum. 57, 2512 (1986).
[CrossRef]

J. C. Brasunas et al., “Balloon-Borne Cryogenic Spectrometer for Measurement of Lower Stratospheric Trace Constituents,” Proc. Soc. Photo-Opt. Instrum. Eng. 619, 80 (1986).

1982

P. Fabian, J. A. Pyle, R. J. Wells, “Diurnal Variations of Minor Constituents in the Stratosphere Modeled as a Function of Latitude and Season,” Geophys. Res. 87, 4982 (1982).
[CrossRef]

A. S. Zachor, E. R. Huppi, I. Coleman, D. G. Frodsham, “Nonlinear Response of Low-Background Extrinsic Silicon Detectors. 2: A Revised Model,” Appl. Opt. 21, 2027 (1982).
[CrossRef] [PubMed]

1981

A. S. Zachor, E. R. Huppi, “Nonlinear Response of Low-Background Extrinsic Silicon Detectors. 1: A Phenomenological Model,” Appl. Opt. 20, 1000 (1981).
[CrossRef] [PubMed]

H. L. Buijs, D. J. W. Kendall, G. Vail, J.-N. Berube, “Fourier Transform Infrared Hardware Developments,” Proc. Soc. Photo-Opt. Instrum. Eng. 289, 322 (1981).

1980

H. L. Buijs, D. Laporte, “Aspects of Dynamically Aligned Fourier Transform Spectrometer Operation at Cryogenic Temperatures,” Proc. Soc. Photo-Opt. Instrum. Eng. 245, 48 (1980).

1979

A. S. Zachor, S. M. Aaronson, “Delay Compensation: Its Effect in Reducing Sampling Errors in Fourier Spectroscopy,” Appl. Opt. 18, 68 (1979).
[CrossRef] [PubMed]

H. Buijs, “A Class of High Resolution Ruggedized Fourier Transform Spectrometers,” Proc. Soc. Photo-Opt. Instrum. Eng. 191, 116 (1979).

1977

E. L. Dereniak, R. R. Joyce, R. W. Capps, “Low-Noise Preamplifier for Photoconductive Detectors,” Rev. Sci. Instrum. 48, 392 (1977).
[CrossRef]

1974

C. L. Wyatt, D. J. Baker, D. G. Frodsham, “A Direct Coupled Low Noise Preamplifier for Cryogenically Cooled Photoconductive i.r. Detectors,” Infrared Phys. 14, 165 (1974).
[CrossRef]

1971

J. C. Gille, F. B. House, “On the Inversion of Limb Radiance Measurements I: Temperature and Thickness,” J. Atmos. Sci. 28, 1427 (1971).
[CrossRef]

1970

M. T. Chahine, “Inverse Problems in Radiative Transfer: Determination of Atmospheric Parameters,” J. Atmos. Sci. 27, 960 (1970).
[CrossRef]

Aaronson, S. M.

Abbas, M. M.

M. M. Abbas et al., “Simultaneous Measurements of Stratospheric O3, H2O, CH4 and N2O Profiles from Infrared Limb Thermal Emissions,” J. Geophys. Res. 92, 8343 (1987).
[CrossRef]

M. M. Abbas et al., “Thermal Emission Spectroscopy of the Stratosphere from Balloon Platforms,” in Advances in Remote Sensing Retrieval Methods, H. E. Fleming, M. T. Chahine, Eds. (A. Deepak, Hampton, VA, 1985).

Baker, D. J.

C. L. Wyatt, D. J. Baker, D. G. Frodsham, “A Direct Coupled Low Noise Preamplifier for Cryogenically Cooled Photoconductive i.r. Detectors,” Infrared Phys. 14, 165 (1974).
[CrossRef]

Ballard, H. N.

H. N. Ballard et al., “Temperature Measurements in the Stratosphere from Balloon-Borne Instrument Platforms 1968–1975,” presented at Ninth AFGL Scientific Balloon Symposium (AFGL-TR-76-3606, 1976).

Bell, R. J.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), p. 66.

Berube, J.-N.

H. L. Buijs, D. J. W. Kendall, G. Vail, J.-N. Berube, “Fourier Transform Infrared Hardware Developments,” Proc. Soc. Photo-Opt. Instrum. Eng. 289, 322 (1981).

Brasunas, J. C.

J. C. Brasunas et al., “Balloon-Borne Cryogenic Spectrometer for Measurement of Lower Stratospheric Trace Constituents,” Proc. Soc. Photo-Opt. Instrum. Eng. 619, 80 (1986).

Buijs, H.

H. Buijs, “A Class of High Resolution Ruggedized Fourier Transform Spectrometers,” Proc. Soc. Photo-Opt. Instrum. Eng. 191, 116 (1979).

Buijs, H. L.

H. L. Buijs, D. J. W. Kendall, G. Vail, J.-N. Berube, “Fourier Transform Infrared Hardware Developments,” Proc. Soc. Photo-Opt. Instrum. Eng. 289, 322 (1981).

H. L. Buijs, D. Laporte, “Aspects of Dynamically Aligned Fourier Transform Spectrometer Operation at Cryogenic Temperatures,” Proc. Soc. Photo-Opt. Instrum. Eng. 245, 48 (1980).

Capps, R. W.

E. L. Dereniak, R. R. Joyce, R. W. Capps, “Low-Noise Preamplifier for Photoconductive Detectors,” Rev. Sci. Instrum. 48, 392 (1977).
[CrossRef]

Chahine, M. T.

M. T. Chahine, “Inverse Problems in Radiative Transfer: Determination of Atmospheric Parameters,” J. Atmos. Sci. 27, 960 (1970).
[CrossRef]

Chance, K. V.

W. A. Traub, K. V. Chance, L. M. Coyle, “Performance of a Single-Axis Platform for Balloon-Borne Remote Sensing,” Rev. Sci. Instrum. 57, 2519 (1986).
[CrossRef]

Coleman, I.

A. S. Zachor, E. R. Huppi, I. Coleman, D. G. Frodsham, “Nonlinear Response of Low-Background Extrinsic Silicon Detectors. 2: A Revised Model,” Appl. Opt. 21, 2027 (1982).
[CrossRef] [PubMed]

A. S. Zachor, I. Coleman, W. G. Mankin, “Effects of Drive Nonlinearities in Fourier Spectrometers,” in Spectrometric Techniques, Vol. 2, G. A. Vanasse, Ed. (Academic, New York, 1981).

Conrath, B. J.

B. J. Conrath, “Backus-Gilbert Theory and Its Application to Retrieval of Ozone and Temperature Profiles,” in Inversion Methods in Atmospheric Remote Sounding, A. Deepak, Ed. (Academic, New York, 1977).

Coyle, L. M.

W. A. Traub, K. V. Chance, L. M. Coyle, “Performance of a Single-Axis Platform for Balloon-Borne Remote Sensing,” Rev. Sci. Instrum. 57, 2519 (1986).
[CrossRef]

L. M. Coyle et al., “Design of a Single-Axis Platform for Balloon-Borne Remote Sensing,” Rev. Sci. Instrum. 57, 2512 (1986).
[CrossRef]

Dereniak, E. L.

E. L. Dereniak, R. R. Joyce, R. W. Capps, “Low-Noise Preamplifier for Photoconductive Detectors,” Rev. Sci. Instrum. 48, 392 (1977).
[CrossRef]

Fabian, P.

P. Fabian, J. A. Pyle, R. J. Wells, “Diurnal Variations of Minor Constituents in the Stratosphere Modeled as a Function of Latitude and Season,” Geophys. Res. 87, 4982 (1982).
[CrossRef]

Frodsham, D. G.

A. S. Zachor, E. R. Huppi, I. Coleman, D. G. Frodsham, “Nonlinear Response of Low-Background Extrinsic Silicon Detectors. 2: A Revised Model,” Appl. Opt. 21, 2027 (1982).
[CrossRef] [PubMed]

C. L. Wyatt, D. J. Baker, D. G. Frodsham, “A Direct Coupled Low Noise Preamplifier for Cryogenically Cooled Photoconductive i.r. Detectors,” Infrared Phys. 14, 165 (1974).
[CrossRef]

Gille, J. C.

J. C. Gille, F. B. House, “On the Inversion of Limb Radiance Measurements I: Temperature and Thickness,” J. Atmos. Sci. 28, 1427 (1971).
[CrossRef]

Hanel, R. A.

R. A. Hanel, in Advances in Geophysics, Vol. 14, H. E. Landsberg, J. Van Mieghem, Eds. (Academic, New York, 1970).
[CrossRef]

House, F. B.

J. C. Gille, F. B. House, “On the Inversion of Limb Radiance Measurements I: Temperature and Thickness,” J. Atmos. Sci. 28, 1427 (1971).
[CrossRef]

Huppi, E. R.

Joyce, R. R.

E. L. Dereniak, R. R. Joyce, R. W. Capps, “Low-Noise Preamplifier for Photoconductive Detectors,” Rev. Sci. Instrum. 48, 392 (1977).
[CrossRef]

Kendall, D. J. W.

H. L. Buijs, D. J. W. Kendall, G. Vail, J.-N. Berube, “Fourier Transform Infrared Hardware Developments,” Proc. Soc. Photo-Opt. Instrum. Eng. 289, 322 (1981).

Kunde, V. G.

Laporte, D.

H. L. Buijs, D. Laporte, “Aspects of Dynamically Aligned Fourier Transform Spectrometer Operation at Cryogenic Temperatures,” Proc. Soc. Photo-Opt. Instrum. Eng. 245, 48 (1980).

Mankin, W. G.

A. S. Zachor, I. Coleman, W. G. Mankin, “Effects of Drive Nonlinearities in Fourier Spectrometers,” in Spectrometric Techniques, Vol. 2, G. A. Vanasse, Ed. (Academic, New York, 1981).

Massie, S. T.

S. T. Massie et al., “Atmospheric Infrared Emission of CONO2 Observed by a Balloon-Borne Fourier Spectrometer,” J. Geophys. Res. 92, 14806 (1987).
[CrossRef]

Pyle, J. A.

P. Fabian, J. A. Pyle, R. J. Wells, “Diurnal Variations of Minor Constituents in the Stratosphere Modeled as a Function of Latitude and Season,” Geophys. Res. 87, 4982 (1982).
[CrossRef]

Steel, W. H.

W. H. Steel, Interferometry (Cambridge U. P., London, 1983).

Traub, W. A.

W. A. Traub, K. V. Chance, L. M. Coyle, “Performance of a Single-Axis Platform for Balloon-Borne Remote Sensing,” Rev. Sci. Instrum. 57, 2519 (1986).
[CrossRef]

Vail, G.

H. L. Buijs, D. J. W. Kendall, G. Vail, J.-N. Berube, “Fourier Transform Infrared Hardware Developments,” Proc. Soc. Photo-Opt. Instrum. Eng. 289, 322 (1981).

Wells, R. J.

P. Fabian, J. A. Pyle, R. J. Wells, “Diurnal Variations of Minor Constituents in the Stratosphere Modeled as a Function of Latitude and Season,” Geophys. Res. 87, 4982 (1982).
[CrossRef]

Wyatt, C. L.

C. L. Wyatt, D. J. Baker, D. G. Frodsham, “A Direct Coupled Low Noise Preamplifier for Cryogenically Cooled Photoconductive i.r. Detectors,” Infrared Phys. 14, 165 (1974).
[CrossRef]

Zachor, A. S.

Appl. Opt.

Geophys. Res.

P. Fabian, J. A. Pyle, R. J. Wells, “Diurnal Variations of Minor Constituents in the Stratosphere Modeled as a Function of Latitude and Season,” Geophys. Res. 87, 4982 (1982).
[CrossRef]

Infrared Phys.

C. L. Wyatt, D. J. Baker, D. G. Frodsham, “A Direct Coupled Low Noise Preamplifier for Cryogenically Cooled Photoconductive i.r. Detectors,” Infrared Phys. 14, 165 (1974).
[CrossRef]

J. Atmos. Sci.

M. T. Chahine, “Inverse Problems in Radiative Transfer: Determination of Atmospheric Parameters,” J. Atmos. Sci. 27, 960 (1970).
[CrossRef]

J. C. Gille, F. B. House, “On the Inversion of Limb Radiance Measurements I: Temperature and Thickness,” J. Atmos. Sci. 28, 1427 (1971).
[CrossRef]

J. Geophys. Res.

S. T. Massie et al., “Atmospheric Infrared Emission of CONO2 Observed by a Balloon-Borne Fourier Spectrometer,” J. Geophys. Res. 92, 14806 (1987).
[CrossRef]

M. M. Abbas et al., “Simultaneous Measurements of Stratospheric O3, H2O, CH4 and N2O Profiles from Infrared Limb Thermal Emissions,” J. Geophys. Res. 92, 8343 (1987).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

H. L. Buijs, D. Laporte, “Aspects of Dynamically Aligned Fourier Transform Spectrometer Operation at Cryogenic Temperatures,” Proc. Soc. Photo-Opt. Instrum. Eng. 245, 48 (1980).

J. C. Brasunas et al., “Balloon-Borne Cryogenic Spectrometer for Measurement of Lower Stratospheric Trace Constituents,” Proc. Soc. Photo-Opt. Instrum. Eng. 619, 80 (1986).

H. Buijs, “A Class of High Resolution Ruggedized Fourier Transform Spectrometers,” Proc. Soc. Photo-Opt. Instrum. Eng. 191, 116 (1979).

H. L. Buijs, D. J. W. Kendall, G. Vail, J.-N. Berube, “Fourier Transform Infrared Hardware Developments,” Proc. Soc. Photo-Opt. Instrum. Eng. 289, 322 (1981).

Rev. Sci. Instrum.

W. A. Traub, K. V. Chance, L. M. Coyle, “Performance of a Single-Axis Platform for Balloon-Borne Remote Sensing,” Rev. Sci. Instrum. 57, 2519 (1986).
[CrossRef]

L. M. Coyle et al., “Design of a Single-Axis Platform for Balloon-Borne Remote Sensing,” Rev. Sci. Instrum. 57, 2512 (1986).
[CrossRef]

E. L. Dereniak, R. R. Joyce, R. W. Capps, “Low-Noise Preamplifier for Photoconductive Detectors,” Rev. Sci. Instrum. 48, 392 (1977).
[CrossRef]

Other

A. S. Zachor, I. Coleman, W. G. Mankin, “Effects of Drive Nonlinearities in Fourier Spectrometers,” in Spectrometric Techniques, Vol. 2, G. A. Vanasse, Ed. (Academic, New York, 1981).

H. N. Ballard et al., “Temperature Measurements in the Stratosphere from Balloon-Borne Instrument Platforms 1968–1975,” presented at Ninth AFGL Scientific Balloon Symposium (AFGL-TR-76-3606, 1976).

M. M. Abbas et al., “Thermal Emission Spectroscopy of the Stratosphere from Balloon Platforms,” in Advances in Remote Sensing Retrieval Methods, H. E. Fleming, M. T. Chahine, Eds. (A. Deepak, Hampton, VA, 1985).

B. J. Conrath, “Backus-Gilbert Theory and Its Application to Retrieval of Ozone and Temperature Profiles,” in Inversion Methods in Atmospheric Remote Sounding, A. Deepak, Ed. (Academic, New York, 1977).

World Meteorological Organization, Atmospheric Ozone 1985: Assessment of Our Understanding of the Processes Controlling Its Present Distribution and Change, Report 16 (Global Ozone Research and Monitoring Project, Geneva, 1986).

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), p. 66.

W. H. Steel, Interferometry (Cambridge U. P., London, 1983).

R. A. Hanel, in Advances in Geophysics, Vol. 14, H. E. Landsberg, J. Van Mieghem, Eds. (Academic, New York, 1970).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Geometry for limb observations. The line-of-sight emission from the ray path, specified by the tangent height (HT), is measured by the balloon-borne instrumentation at float altitude (H2).

Fig. 2
Fig. 2

Limb sequence (1984) exhibiting predominantly HNO3 emissions. The maximum emission is seen to occur in the tangent height range of 20–25 km and indicates a maximum in the HNO3 distribution in the same altitude range. The spectral resolution is 0.03-cm−1 unapodized.

Fig. 3
Fig. 3

Measured limb sequence (1984) from 40-km altitude exhibiting CH4, N2O, H2O, and HNO3 emissions. The spectral resolution is 0.03-cm−1 unapodized. The lines denoted by asterisks are from the ν1 N2O fundamental.

Fig. 4
Fig. 4

Measured limb sequence (1986) from 40-km altitude exhibiting emission lines of NO2. The spectral resolution is 0.04-cm−1 apodized.

Fig. 5
Fig. 5

SIRIS functional overview flight mode.

Fig. 6
Fig. 6

Background noise limits for several infrared sources. The short horizontal lines indicate the channel locations. The channels are selected to avoid the major emissions from CO2, H2O, and O3 in the atmosphere.

Fig. 7
Fig. 7

Mechanical outline of SIRIS in the balloon gondola frame.

Fig. 8
Fig. 8

Overview of SIRIS optics.

Fig. 9
Fig. 9

Mechanical outline of the LHe Dewar.

Fig. 10
Fig. 10

Schematic of LHe cold plate optics and detectors. The single detector for the wideband mode is to the left of the figure. The optical layout for the four narrowband detectors is shown in the right-hand portion of the figure.

Fig. 11
Fig. 11

Mechanical cross section of a Ga:Si detector.

Fig. 12
Fig. 12

Measured FOVs for channel 2.

Fig. 13
Fig. 13

Signal processing electronics.

Fig. 14
Fig. 14

Upward-looking unapodized data from the 1986 flight. The measured FWHM is 0.029 cm−1, in agreement with the expected theoretical spectral resolution.

Fig. 15
Fig. 15

Observed NESR performance from 76-s scans from the 1986 flight: (a) channel 1 and (b) channel 2.

Tables (2)

Tables Icon

Table I SIRIS Characteristics, 1986 Flight

Tables Icon

Table II Noise Level Summaries of the Narrowband Channels Configured for the 1986 Flight

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ σ = 1 / 4 L ,
R Ω = 2 π ,
f = 2 v σ .
θ incl = θ 0 exp ( i ω t ) [ 1 - ( ω / ω 0 ) 2 ]
NESR ( W cm - 2 sr - 1 / cm - 1 ) = 2 2 NEP M η A Ω Δ σ t ,
R T = ( C T / C W ) ( R W + R B ) - R B

Metrics