Abstract

Infrared emission spectra of effluents from the smokestacks of typical small buildings were observed remotely using a Fourier transform infrared (FTIR) spectrometer. The primary purpose of the study was to determine the best method for distinguishing gas from oil as the fuel being burned in a building’s furnace. Spectral pattern recognition techniques were employed to suppress the strong and highly varying background to the extent required to extract the very weak molecular emission features from the effluent spectra. It was found that several prominent H2O and CO2 transitions could be used to discriminate between the combustion products of gas and oil by determining the H2O/CO2 concentration ratio in the exhaust gases.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. D. Low, F. K. Clancy, “Remote Sensing and Characterization of Stack Gases by Infrared Spectroscopy. An Approach by Using Multiple-Scan Interference Spectroscopy,” Environ. Sci. Technol. 1, 73 (1967).
    [CrossRef] [PubMed]
  2. H. W. Prengle, C. A. Morgan, C.-S. Fang, L. K. Huang, P. Campani, W. W. Wu, “Infrared Remote Sensing and Determination of Pollutants in Gas Plumes,” Environ. Sci. Technol. 7, 417 (1973).
    [CrossRef] [PubMed]
  3. S. H. Chan, C. C. Lin, M. J. D. Low, “Analysis of Principles of Remote Sensing and Characterization of Stack Gases by Infrared Spectroscopy,” Environ. Sci. Technol. 7, 424 (1973).
    [CrossRef] [PubMed]
  4. D. D. Davis, G. Smith, G. Klauber, “Trace Gas Analysis of Power Plant Plumes Via Aircraft Measurement: O3, NOx, and SO2 Chemistry,” Science 186, 733 (1974).
    [CrossRef] [PubMed]
  5. L. H. Tanabe, W. F. Herget, “Determination of SO2 Concentrations from a Coal-Burning Power Plant Stack by Fourier Spectroscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 95, 66 (1976).
  6. J. E. A. Selby, R. A. Reed, “Atmospheric Background and Smoke Stack Measurements and Modeling in the 3.8–5.5μm Region,” Proc. Soc. Photo-Opt. Instrum. Eng. 142, 9 (1978).
  7. W. F. Herget, J. D. Brasher, “Remote Fourier Transform Infrared Air Pollution Studies,” Opt. Eng. 19, 508 (1980).
    [CrossRef]
  8. O. Shepherd, A. G. Hurd, R. B. Wattson, H. J. P. Smith, G. A. Vanasse, “Spectral Measurements of Stack Effluents Using a Double-Beam Interferometer with Background Suppression,” Appl. Opt. 20, 3972 (1981).
    [CrossRef] [PubMed]
  9. W. F. Herget, “Remote and Cross-Stack Measurement of Stack Gas Concentrations Using a Mobile FT-IR System,” Appl. Opt. 21, 635 (1982).
    [CrossRef] [PubMed]
  10. G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1945).
  11. H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, L. S. Rothman, “fascode-Fast Atmospheric Signature Code (Spectral Transmittance and Radiance),” AFGL-TR-78-0081 (Air Force Geophysics Laboratory, Bedford, MA 01731, 1978).
  12. E. R. Niple, “A Spectral Pattern Recognition Algorithm for the Detection of Trade Gas Species in the Presence of Highly-Varying Backgrounds,” to be published.

1982 (1)

1981 (1)

1980 (1)

W. F. Herget, J. D. Brasher, “Remote Fourier Transform Infrared Air Pollution Studies,” Opt. Eng. 19, 508 (1980).
[CrossRef]

1978 (1)

J. E. A. Selby, R. A. Reed, “Atmospheric Background and Smoke Stack Measurements and Modeling in the 3.8–5.5μm Region,” Proc. Soc. Photo-Opt. Instrum. Eng. 142, 9 (1978).

1976 (1)

L. H. Tanabe, W. F. Herget, “Determination of SO2 Concentrations from a Coal-Burning Power Plant Stack by Fourier Spectroscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 95, 66 (1976).

1974 (1)

D. D. Davis, G. Smith, G. Klauber, “Trace Gas Analysis of Power Plant Plumes Via Aircraft Measurement: O3, NOx, and SO2 Chemistry,” Science 186, 733 (1974).
[CrossRef] [PubMed]

1973 (2)

H. W. Prengle, C. A. Morgan, C.-S. Fang, L. K. Huang, P. Campani, W. W. Wu, “Infrared Remote Sensing and Determination of Pollutants in Gas Plumes,” Environ. Sci. Technol. 7, 417 (1973).
[CrossRef] [PubMed]

S. H. Chan, C. C. Lin, M. J. D. Low, “Analysis of Principles of Remote Sensing and Characterization of Stack Gases by Infrared Spectroscopy,” Environ. Sci. Technol. 7, 424 (1973).
[CrossRef] [PubMed]

1967 (1)

M. J. D. Low, F. K. Clancy, “Remote Sensing and Characterization of Stack Gases by Infrared Spectroscopy. An Approach by Using Multiple-Scan Interference Spectroscopy,” Environ. Sci. Technol. 1, 73 (1967).
[CrossRef] [PubMed]

Brasher, J. D.

W. F. Herget, J. D. Brasher, “Remote Fourier Transform Infrared Air Pollution Studies,” Opt. Eng. 19, 508 (1980).
[CrossRef]

Campani, P.

H. W. Prengle, C. A. Morgan, C.-S. Fang, L. K. Huang, P. Campani, W. W. Wu, “Infrared Remote Sensing and Determination of Pollutants in Gas Plumes,” Environ. Sci. Technol. 7, 417 (1973).
[CrossRef] [PubMed]

Chan, S. H.

S. H. Chan, C. C. Lin, M. J. D. Low, “Analysis of Principles of Remote Sensing and Characterization of Stack Gases by Infrared Spectroscopy,” Environ. Sci. Technol. 7, 424 (1973).
[CrossRef] [PubMed]

Clancy, F. K.

M. J. D. Low, F. K. Clancy, “Remote Sensing and Characterization of Stack Gases by Infrared Spectroscopy. An Approach by Using Multiple-Scan Interference Spectroscopy,” Environ. Sci. Technol. 1, 73 (1967).
[CrossRef] [PubMed]

Clough, S. A.

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, L. S. Rothman, “fascode-Fast Atmospheric Signature Code (Spectral Transmittance and Radiance),” AFGL-TR-78-0081 (Air Force Geophysics Laboratory, Bedford, MA 01731, 1978).

Davis, D. D.

D. D. Davis, G. Smith, G. Klauber, “Trace Gas Analysis of Power Plant Plumes Via Aircraft Measurement: O3, NOx, and SO2 Chemistry,” Science 186, 733 (1974).
[CrossRef] [PubMed]

Dube, D. J.

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, L. S. Rothman, “fascode-Fast Atmospheric Signature Code (Spectral Transmittance and Radiance),” AFGL-TR-78-0081 (Air Force Geophysics Laboratory, Bedford, MA 01731, 1978).

Fang, C.-S.

H. W. Prengle, C. A. Morgan, C.-S. Fang, L. K. Huang, P. Campani, W. W. Wu, “Infrared Remote Sensing and Determination of Pollutants in Gas Plumes,” Environ. Sci. Technol. 7, 417 (1973).
[CrossRef] [PubMed]

Gardner, M. E.

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, L. S. Rothman, “fascode-Fast Atmospheric Signature Code (Spectral Transmittance and Radiance),” AFGL-TR-78-0081 (Air Force Geophysics Laboratory, Bedford, MA 01731, 1978).

Herget, W. F.

W. F. Herget, “Remote and Cross-Stack Measurement of Stack Gas Concentrations Using a Mobile FT-IR System,” Appl. Opt. 21, 635 (1982).
[CrossRef] [PubMed]

W. F. Herget, J. D. Brasher, “Remote Fourier Transform Infrared Air Pollution Studies,” Opt. Eng. 19, 508 (1980).
[CrossRef]

L. H. Tanabe, W. F. Herget, “Determination of SO2 Concentrations from a Coal-Burning Power Plant Stack by Fourier Spectroscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 95, 66 (1976).

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1945).

Huang, L. K.

H. W. Prengle, C. A. Morgan, C.-S. Fang, L. K. Huang, P. Campani, W. W. Wu, “Infrared Remote Sensing and Determination of Pollutants in Gas Plumes,” Environ. Sci. Technol. 7, 417 (1973).
[CrossRef] [PubMed]

Hurd, A. G.

Klauber, G.

D. D. Davis, G. Smith, G. Klauber, “Trace Gas Analysis of Power Plant Plumes Via Aircraft Measurement: O3, NOx, and SO2 Chemistry,” Science 186, 733 (1974).
[CrossRef] [PubMed]

Kneizys, F. X.

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, L. S. Rothman, “fascode-Fast Atmospheric Signature Code (Spectral Transmittance and Radiance),” AFGL-TR-78-0081 (Air Force Geophysics Laboratory, Bedford, MA 01731, 1978).

Lin, C. C.

S. H. Chan, C. C. Lin, M. J. D. Low, “Analysis of Principles of Remote Sensing and Characterization of Stack Gases by Infrared Spectroscopy,” Environ. Sci. Technol. 7, 424 (1973).
[CrossRef] [PubMed]

Low, M. J. D.

S. H. Chan, C. C. Lin, M. J. D. Low, “Analysis of Principles of Remote Sensing and Characterization of Stack Gases by Infrared Spectroscopy,” Environ. Sci. Technol. 7, 424 (1973).
[CrossRef] [PubMed]

M. J. D. Low, F. K. Clancy, “Remote Sensing and Characterization of Stack Gases by Infrared Spectroscopy. An Approach by Using Multiple-Scan Interference Spectroscopy,” Environ. Sci. Technol. 1, 73 (1967).
[CrossRef] [PubMed]

Morgan, C. A.

H. W. Prengle, C. A. Morgan, C.-S. Fang, L. K. Huang, P. Campani, W. W. Wu, “Infrared Remote Sensing and Determination of Pollutants in Gas Plumes,” Environ. Sci. Technol. 7, 417 (1973).
[CrossRef] [PubMed]

Niple, E. R.

E. R. Niple, “A Spectral Pattern Recognition Algorithm for the Detection of Trade Gas Species in the Presence of Highly-Varying Backgrounds,” to be published.

Prengle, H. W.

H. W. Prengle, C. A. Morgan, C.-S. Fang, L. K. Huang, P. Campani, W. W. Wu, “Infrared Remote Sensing and Determination of Pollutants in Gas Plumes,” Environ. Sci. Technol. 7, 417 (1973).
[CrossRef] [PubMed]

Reed, R. A.

J. E. A. Selby, R. A. Reed, “Atmospheric Background and Smoke Stack Measurements and Modeling in the 3.8–5.5μm Region,” Proc. Soc. Photo-Opt. Instrum. Eng. 142, 9 (1978).

Rothman, L. S.

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, L. S. Rothman, “fascode-Fast Atmospheric Signature Code (Spectral Transmittance and Radiance),” AFGL-TR-78-0081 (Air Force Geophysics Laboratory, Bedford, MA 01731, 1978).

Selby, J. E. A.

J. E. A. Selby, R. A. Reed, “Atmospheric Background and Smoke Stack Measurements and Modeling in the 3.8–5.5μm Region,” Proc. Soc. Photo-Opt. Instrum. Eng. 142, 9 (1978).

Shepherd, O.

Smith, G.

D. D. Davis, G. Smith, G. Klauber, “Trace Gas Analysis of Power Plant Plumes Via Aircraft Measurement: O3, NOx, and SO2 Chemistry,” Science 186, 733 (1974).
[CrossRef] [PubMed]

Smith, H. J. P.

O. Shepherd, A. G. Hurd, R. B. Wattson, H. J. P. Smith, G. A. Vanasse, “Spectral Measurements of Stack Effluents Using a Double-Beam Interferometer with Background Suppression,” Appl. Opt. 20, 3972 (1981).
[CrossRef] [PubMed]

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, L. S. Rothman, “fascode-Fast Atmospheric Signature Code (Spectral Transmittance and Radiance),” AFGL-TR-78-0081 (Air Force Geophysics Laboratory, Bedford, MA 01731, 1978).

Tanabe, L. H.

L. H. Tanabe, W. F. Herget, “Determination of SO2 Concentrations from a Coal-Burning Power Plant Stack by Fourier Spectroscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 95, 66 (1976).

Vanasse, G. A.

Wattson, R. B.

Wu, W. W.

H. W. Prengle, C. A. Morgan, C.-S. Fang, L. K. Huang, P. Campani, W. W. Wu, “Infrared Remote Sensing and Determination of Pollutants in Gas Plumes,” Environ. Sci. Technol. 7, 417 (1973).
[CrossRef] [PubMed]

Appl. Opt. (2)

Environ. Sci. Technol. (3)

M. J. D. Low, F. K. Clancy, “Remote Sensing and Characterization of Stack Gases by Infrared Spectroscopy. An Approach by Using Multiple-Scan Interference Spectroscopy,” Environ. Sci. Technol. 1, 73 (1967).
[CrossRef] [PubMed]

H. W. Prengle, C. A. Morgan, C.-S. Fang, L. K. Huang, P. Campani, W. W. Wu, “Infrared Remote Sensing and Determination of Pollutants in Gas Plumes,” Environ. Sci. Technol. 7, 417 (1973).
[CrossRef] [PubMed]

S. H. Chan, C. C. Lin, M. J. D. Low, “Analysis of Principles of Remote Sensing and Characterization of Stack Gases by Infrared Spectroscopy,” Environ. Sci. Technol. 7, 424 (1973).
[CrossRef] [PubMed]

Opt. Eng. (1)

W. F. Herget, J. D. Brasher, “Remote Fourier Transform Infrared Air Pollution Studies,” Opt. Eng. 19, 508 (1980).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

L. H. Tanabe, W. F. Herget, “Determination of SO2 Concentrations from a Coal-Burning Power Plant Stack by Fourier Spectroscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 95, 66 (1976).

J. E. A. Selby, R. A. Reed, “Atmospheric Background and Smoke Stack Measurements and Modeling in the 3.8–5.5μm Region,” Proc. Soc. Photo-Opt. Instrum. Eng. 142, 9 (1978).

Science (1)

D. D. Davis, G. Smith, G. Klauber, “Trace Gas Analysis of Power Plant Plumes Via Aircraft Measurement: O3, NOx, and SO2 Chemistry,” Science 186, 733 (1974).
[CrossRef] [PubMed]

Other (3)

G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1945).

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, L. S. Rothman, “fascode-Fast Atmospheric Signature Code (Spectral Transmittance and Radiance),” AFGL-TR-78-0081 (Air Force Geophysics Laboratory, Bedford, MA 01731, 1978).

E. R. Niple, “A Spectral Pattern Recognition Algorithm for the Detection of Trade Gas Species in the Presence of Highly-Varying Backgrounds,” to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Two-pixel difference (target minus sky background) emission spectrum of a 91-cm diam industrial smokestack (4-cm−1 resolution).

Fig. 2
Fig. 2

Two-pixel difference emission spectrum of the industrial smokestack, CO2 region (0.2-cm−1 resolution).

Fig. 3
Fig. 3

Two-pixel difference emission spectrum of the industrial smokestack, H2O region (0.2-cm−1 resolution).

Fig. 4
Fig. 4

fascod1 simulation of two-pixel difference emission spectrum, 30-cm diam stack, CO2 region (0.2-cm−1 resolution). Plume and sky background models are given in Table I.

Fig. 5
Fig. 5

fascod1 simulation of two-pixel difference emission spectrum, 30-cm diam stack, H2O region (0.2-cm−1 resolution).

Fig. 6
Fig. 6

Unprocessed emission spectrum of a gas-burning plume, stack A (4-cm−1 resolution).

Fig. 7
Fig. 7

Unprocessed emission spectrum of an oil-burning plume, stack A (4-cm−1 resolution).

Fig. 8
Fig. 8

Unprocessed sky background emission spectrum (4-cm−1 resolution).

Fig. 9
Fig. 9

Two-pixel difference emission spectrum of a gas-burning plume, stack A (4-cm−1 resolution).

Fig. 10
Fig. 10

Examples of the FTIR spectrometer’s FOV (darkened circle), stack A, as seen by the video monitor.

Fig. 11
Fig. 11

Illustration of the spectral pattern recognition background suppression process.

Fig. 12
Fig. 12

Equations for the radiance reaching the FTIR spectrometer: (a) General equation for the radiance detected when the spectrometer’s FOV includes the plume, the sky, and the warm smokestack. (b) Modification of equation 1 for the case where (1) there is no scattering by the plume, so that τp, = 1 − p, where p = the emissivity of the plume, and (2) Np = pB(τp), where B(τp) = the Planck function. (c) Modification of equation 2 for the case where the plume completely fills the spectrometer’s FOV.

Fig. 13
Fig. 13

Residual spectrum after spectral pattern recognitionback-ground suppression for a gas-burning plume, stack A (4-cin−1 resolution).

Fig. 14
Fig. 14

Residual spectrum after spectral pattern recognition back-ground suppression for an oil-burning plume, stack A (4-cm−1 resolution).

Fig. 15
Fig. 15

Relative strength of the 1314.5-cm−1 H2O feature vs that of the 719-cm−1 CO2 feature, illustrating the effectiveness of the spectral pattern recognition background suppression method.

Fig. 16
Fig. 16

Relative strength of the 1314.5-cm−1 H2O feature vs that of the 719-cm−1 CO2 feature, illustrating the limitations of the two-pixel differencing method.

Tables (1)

Tables Icon

Table I Plume and Sky Background Models Used as Input to fascod1

Metrics