Abstract

A high current hollow cathode source has been developed as a radiometric source standard for the extreme VUV. The source is operated at a constant current of 2 A with an aluminum cathode and helium or argon as buffer gas at pressures of ~1 hPa. The radiance of spectral lines in the wavelength range from 13 to 60 nm has been determined by comparison to the calculable spectral radiant power of the electron storage ring BESSY. An uncertainty of the order of 13% has been achieved for most of the investigated lines. The spectral emission is stable to better than 5% for an operating time of 30 h. An exchange of the cathode restores the original radiance.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kühne, B. Wende, “VUV and Soft X-Ray Radiometry,” J. Phys. E 18, 637 (1985).
    [Crossref]
  2. J. M. Bridges, W. R. Ott, “Vacuum Ultraviolet Radiometry. 3: The Argon Mini-arc as a New Secondary Standard of Spectral Radiance,” Appl. Opt. 16, 367 (1977).
    [Crossref] [PubMed]
  3. D. Einfeld, K. Grützmacher, D. Stuck, “On the Use of a Low Current Argon Arc with a MgF2 Window as a VUV Transfer Standard of the Spectral Radiance (125 nm ≤ λ ≤ 335 nm),” Z. Naturforsch. Teil A 34, 233 (1979).
  4. R. C. Preston, C. Brookes, F. W. J. Clutterbuck, “Vacuum Ultraviolet Radiance Transfer Standard Based on an Argon Miniarc with Integral Differential Pumping Unit,” J. Phys. E 13, 1206 (1980).
    [Crossref]
  5. R. D. Saunders, W. R. Ott, J. M. Bridges, “Spectral Irradiance Standard for the Ultraviolet: the Deuterium Lamp,” Appl. Opt. 17, 593 (1978).
    [Crossref] [PubMed]
  6. D. Einfeld, D. Stuck, B. Wende, “Calibration of Radiometric Transfer Standards in the UV and VUV by Electron Synchrotron Radiation Using a Normal Incidence Radiometer,” Metrologia 14, 111 (1978).
    [Crossref]
  7. P. J. Key, R. C. Preston, “Magnesium Fluoride Windowed Deuterium Lamps as Radiance Transfer Standards Between 115 nm and 370 nm,” J. Phys. E 13, 866 (1980).
    [Crossref]
  8. K. Behringer, P. Thoma, “VUV Radiometry Below 100 nm: the Highpower Hydrogen Arc as a Standard Source of Continuum Radiation Between 53 nm and 92 nm,” Appl. Opt. 18, 2586 (1979).
    [Crossref] [PubMed]
  9. J. Fischer, M. Kühne, B. Wende, “Laser-Produced Plasmas as Radiometric Transfer-Standard Sources for the Vacuum-Ultraviolet and the Soft X-Ray Range,” Metrologia 23, 179 (1986/1987).
    [Crossref]
  10. K. Danzmann, M. Kock, “Oscillator Strengths of Ti ii from Combined Hook and Emission Measurements,” J. Phys. B 13, 2051 (1980).
    [Crossref]
  11. K. Danzmann, J. Fischer, M. Kühne, “A High Current Hollow Cathode as a Source of Intense Line Radiation in the VUV,” J. Phys. D 18, 1299 (1985).
    [Crossref]
  12. F. Riehle, B. Wende, “Electron Storage Ring BESSY as a Radiometric Source of Calculable Spectral Radiant Power Between 0.5 nm and 1000 nm,” Opt. Lett. 10, 365 (1985).
    [Crossref] [PubMed]
  13. F. Riehle, B. Wende, “Ein Elektronenspeicherring als primäres Strahlungsnormal zur Realisierung strahlungsoptischer Einheiten vom Infraroten bis in den Bereich weicher Röntgenstrahlung,” Optik 75, 142 (1987).
  14. J. Schwinger, “On the Classical Radiation of Accelerated Electrons,” Phys. Rev. 75, 1912 (1949).
    [Crossref]
  15. J. Fischer, M. Küuhne, B. Wende, “Spectral Radiant Power Measurements of VUV and Soft X-Ray Sources Using the Electron Storage Ring BESSY as a Radiometric Standard Source,” Appl. Opt. 23, 4252 (1984).
    [Crossref] [PubMed]

1987 (1)

F. Riehle, B. Wende, “Ein Elektronenspeicherring als primäres Strahlungsnormal zur Realisierung strahlungsoptischer Einheiten vom Infraroten bis in den Bereich weicher Röntgenstrahlung,” Optik 75, 142 (1987).

1985 (3)

K. Danzmann, J. Fischer, M. Kühne, “A High Current Hollow Cathode as a Source of Intense Line Radiation in the VUV,” J. Phys. D 18, 1299 (1985).
[Crossref]

F. Riehle, B. Wende, “Electron Storage Ring BESSY as a Radiometric Source of Calculable Spectral Radiant Power Between 0.5 nm and 1000 nm,” Opt. Lett. 10, 365 (1985).
[Crossref] [PubMed]

M. Kühne, B. Wende, “VUV and Soft X-Ray Radiometry,” J. Phys. E 18, 637 (1985).
[Crossref]

1984 (1)

1980 (3)

R. C. Preston, C. Brookes, F. W. J. Clutterbuck, “Vacuum Ultraviolet Radiance Transfer Standard Based on an Argon Miniarc with Integral Differential Pumping Unit,” J. Phys. E 13, 1206 (1980).
[Crossref]

P. J. Key, R. C. Preston, “Magnesium Fluoride Windowed Deuterium Lamps as Radiance Transfer Standards Between 115 nm and 370 nm,” J. Phys. E 13, 866 (1980).
[Crossref]

K. Danzmann, M. Kock, “Oscillator Strengths of Ti ii from Combined Hook and Emission Measurements,” J. Phys. B 13, 2051 (1980).
[Crossref]

1979 (2)

D. Einfeld, K. Grützmacher, D. Stuck, “On the Use of a Low Current Argon Arc with a MgF2 Window as a VUV Transfer Standard of the Spectral Radiance (125 nm ≤ λ ≤ 335 nm),” Z. Naturforsch. Teil A 34, 233 (1979).

K. Behringer, P. Thoma, “VUV Radiometry Below 100 nm: the Highpower Hydrogen Arc as a Standard Source of Continuum Radiation Between 53 nm and 92 nm,” Appl. Opt. 18, 2586 (1979).
[Crossref] [PubMed]

1978 (2)

R. D. Saunders, W. R. Ott, J. M. Bridges, “Spectral Irradiance Standard for the Ultraviolet: the Deuterium Lamp,” Appl. Opt. 17, 593 (1978).
[Crossref] [PubMed]

D. Einfeld, D. Stuck, B. Wende, “Calibration of Radiometric Transfer Standards in the UV and VUV by Electron Synchrotron Radiation Using a Normal Incidence Radiometer,” Metrologia 14, 111 (1978).
[Crossref]

1977 (1)

1949 (1)

J. Schwinger, “On the Classical Radiation of Accelerated Electrons,” Phys. Rev. 75, 1912 (1949).
[Crossref]

Behringer, K.

Bridges, J. M.

Brookes, C.

R. C. Preston, C. Brookes, F. W. J. Clutterbuck, “Vacuum Ultraviolet Radiance Transfer Standard Based on an Argon Miniarc with Integral Differential Pumping Unit,” J. Phys. E 13, 1206 (1980).
[Crossref]

Clutterbuck, F. W. J.

R. C. Preston, C. Brookes, F. W. J. Clutterbuck, “Vacuum Ultraviolet Radiance Transfer Standard Based on an Argon Miniarc with Integral Differential Pumping Unit,” J. Phys. E 13, 1206 (1980).
[Crossref]

Danzmann, K.

K. Danzmann, J. Fischer, M. Kühne, “A High Current Hollow Cathode as a Source of Intense Line Radiation in the VUV,” J. Phys. D 18, 1299 (1985).
[Crossref]

K. Danzmann, M. Kock, “Oscillator Strengths of Ti ii from Combined Hook and Emission Measurements,” J. Phys. B 13, 2051 (1980).
[Crossref]

Einfeld, D.

D. Einfeld, K. Grützmacher, D. Stuck, “On the Use of a Low Current Argon Arc with a MgF2 Window as a VUV Transfer Standard of the Spectral Radiance (125 nm ≤ λ ≤ 335 nm),” Z. Naturforsch. Teil A 34, 233 (1979).

D. Einfeld, D. Stuck, B. Wende, “Calibration of Radiometric Transfer Standards in the UV and VUV by Electron Synchrotron Radiation Using a Normal Incidence Radiometer,” Metrologia 14, 111 (1978).
[Crossref]

Fischer, J.

J. Fischer, M. Kühne, B. Wende, “Laser-Produced Plasmas as Radiometric Transfer-Standard Sources for the Vacuum-Ultraviolet and the Soft X-Ray Range,” Metrologia 23, 179 (1986/1987).
[Crossref]

K. Danzmann, J. Fischer, M. Kühne, “A High Current Hollow Cathode as a Source of Intense Line Radiation in the VUV,” J. Phys. D 18, 1299 (1985).
[Crossref]

J. Fischer, M. Küuhne, B. Wende, “Spectral Radiant Power Measurements of VUV and Soft X-Ray Sources Using the Electron Storage Ring BESSY as a Radiometric Standard Source,” Appl. Opt. 23, 4252 (1984).
[Crossref] [PubMed]

Grützmacher, K.

D. Einfeld, K. Grützmacher, D. Stuck, “On the Use of a Low Current Argon Arc with a MgF2 Window as a VUV Transfer Standard of the Spectral Radiance (125 nm ≤ λ ≤ 335 nm),” Z. Naturforsch. Teil A 34, 233 (1979).

Key, P. J.

P. J. Key, R. C. Preston, “Magnesium Fluoride Windowed Deuterium Lamps as Radiance Transfer Standards Between 115 nm and 370 nm,” J. Phys. E 13, 866 (1980).
[Crossref]

Kock, M.

K. Danzmann, M. Kock, “Oscillator Strengths of Ti ii from Combined Hook and Emission Measurements,” J. Phys. B 13, 2051 (1980).
[Crossref]

Kühne, M.

J. Fischer, M. Kühne, B. Wende, “Laser-Produced Plasmas as Radiometric Transfer-Standard Sources for the Vacuum-Ultraviolet and the Soft X-Ray Range,” Metrologia 23, 179 (1986/1987).
[Crossref]

K. Danzmann, J. Fischer, M. Kühne, “A High Current Hollow Cathode as a Source of Intense Line Radiation in the VUV,” J. Phys. D 18, 1299 (1985).
[Crossref]

M. Kühne, B. Wende, “VUV and Soft X-Ray Radiometry,” J. Phys. E 18, 637 (1985).
[Crossref]

Küuhne, M.

Ott, W. R.

Preston, R. C.

R. C. Preston, C. Brookes, F. W. J. Clutterbuck, “Vacuum Ultraviolet Radiance Transfer Standard Based on an Argon Miniarc with Integral Differential Pumping Unit,” J. Phys. E 13, 1206 (1980).
[Crossref]

P. J. Key, R. C. Preston, “Magnesium Fluoride Windowed Deuterium Lamps as Radiance Transfer Standards Between 115 nm and 370 nm,” J. Phys. E 13, 866 (1980).
[Crossref]

Riehle, F.

F. Riehle, B. Wende, “Ein Elektronenspeicherring als primäres Strahlungsnormal zur Realisierung strahlungsoptischer Einheiten vom Infraroten bis in den Bereich weicher Röntgenstrahlung,” Optik 75, 142 (1987).

F. Riehle, B. Wende, “Electron Storage Ring BESSY as a Radiometric Source of Calculable Spectral Radiant Power Between 0.5 nm and 1000 nm,” Opt. Lett. 10, 365 (1985).
[Crossref] [PubMed]

Saunders, R. D.

Schwinger, J.

J. Schwinger, “On the Classical Radiation of Accelerated Electrons,” Phys. Rev. 75, 1912 (1949).
[Crossref]

Stuck, D.

D. Einfeld, K. Grützmacher, D. Stuck, “On the Use of a Low Current Argon Arc with a MgF2 Window as a VUV Transfer Standard of the Spectral Radiance (125 nm ≤ λ ≤ 335 nm),” Z. Naturforsch. Teil A 34, 233 (1979).

D. Einfeld, D. Stuck, B. Wende, “Calibration of Radiometric Transfer Standards in the UV and VUV by Electron Synchrotron Radiation Using a Normal Incidence Radiometer,” Metrologia 14, 111 (1978).
[Crossref]

Thoma, P.

Wende, B.

F. Riehle, B. Wende, “Ein Elektronenspeicherring als primäres Strahlungsnormal zur Realisierung strahlungsoptischer Einheiten vom Infraroten bis in den Bereich weicher Röntgenstrahlung,” Optik 75, 142 (1987).

J. Fischer, M. Kühne, B. Wende, “Laser-Produced Plasmas as Radiometric Transfer-Standard Sources for the Vacuum-Ultraviolet and the Soft X-Ray Range,” Metrologia 23, 179 (1986/1987).
[Crossref]

F. Riehle, B. Wende, “Electron Storage Ring BESSY as a Radiometric Source of Calculable Spectral Radiant Power Between 0.5 nm and 1000 nm,” Opt. Lett. 10, 365 (1985).
[Crossref] [PubMed]

M. Kühne, B. Wende, “VUV and Soft X-Ray Radiometry,” J. Phys. E 18, 637 (1985).
[Crossref]

J. Fischer, M. Küuhne, B. Wende, “Spectral Radiant Power Measurements of VUV and Soft X-Ray Sources Using the Electron Storage Ring BESSY as a Radiometric Standard Source,” Appl. Opt. 23, 4252 (1984).
[Crossref] [PubMed]

D. Einfeld, D. Stuck, B. Wende, “Calibration of Radiometric Transfer Standards in the UV and VUV by Electron Synchrotron Radiation Using a Normal Incidence Radiometer,” Metrologia 14, 111 (1978).
[Crossref]

Appl. Opt. (4)

J. Phys. B (1)

K. Danzmann, M. Kock, “Oscillator Strengths of Ti ii from Combined Hook and Emission Measurements,” J. Phys. B 13, 2051 (1980).
[Crossref]

J. Phys. D (1)

K. Danzmann, J. Fischer, M. Kühne, “A High Current Hollow Cathode as a Source of Intense Line Radiation in the VUV,” J. Phys. D 18, 1299 (1985).
[Crossref]

J. Phys. E (3)

P. J. Key, R. C. Preston, “Magnesium Fluoride Windowed Deuterium Lamps as Radiance Transfer Standards Between 115 nm and 370 nm,” J. Phys. E 13, 866 (1980).
[Crossref]

M. Kühne, B. Wende, “VUV and Soft X-Ray Radiometry,” J. Phys. E 18, 637 (1985).
[Crossref]

R. C. Preston, C. Brookes, F. W. J. Clutterbuck, “Vacuum Ultraviolet Radiance Transfer Standard Based on an Argon Miniarc with Integral Differential Pumping Unit,” J. Phys. E 13, 1206 (1980).
[Crossref]

Metrologia (2)

J. Fischer, M. Kühne, B. Wende, “Laser-Produced Plasmas as Radiometric Transfer-Standard Sources for the Vacuum-Ultraviolet and the Soft X-Ray Range,” Metrologia 23, 179 (1986/1987).
[Crossref]

D. Einfeld, D. Stuck, B. Wende, “Calibration of Radiometric Transfer Standards in the UV and VUV by Electron Synchrotron Radiation Using a Normal Incidence Radiometer,” Metrologia 14, 111 (1978).
[Crossref]

Opt. Lett. (1)

Optik (1)

F. Riehle, B. Wende, “Ein Elektronenspeicherring als primäres Strahlungsnormal zur Realisierung strahlungsoptischer Einheiten vom Infraroten bis in den Bereich weicher Röntgenstrahlung,” Optik 75, 142 (1987).

Phys. Rev. (1)

J. Schwinger, “On the Classical Radiation of Accelerated Electrons,” Phys. Rev. 75, 1912 (1949).
[Crossref]

Z. Naturforsch. Teil A (1)

D. Einfeld, K. Grützmacher, D. Stuck, “On the Use of a Low Current Argon Arc with a MgF2 Window as a VUV Transfer Standard of the Spectral Radiance (125 nm ≤ λ ≤ 335 nm),” Z. Naturforsch. Teil A 34, 233 (1979).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Longitudinal section of the hollow cathode with integrated two-stage differential pumping system.

Fig. 2
Fig. 2

Discharge voltage as a function of buffer gas. pressure. The emission of the HC is calibrated at the working point (2 A, 400 V).

Fig. 3
Fig. 3

Angular characteristic of radiation emission. To obtain the characteristic the hollow cathode was pivoted around an axis passing through the flux-limiting aperture A perpendicular to the direction of observation. The angular resolution was 6 × 10−7 sr.

Fig. 4
Fig. 4

Irradiance distribution over the cross section of the measuring aperture. A section of 50 × 150 μm2 was used to obtain a single measuring point.

Fig. 5
Fig. 5

Instrumentation for comparing at grazing incidence the unknown spectral radiant flux of the hollow cathode source with the calculated spectral radiant flux of the electron storage ring BESSY.

Tables (2)

Tables Icon

Table I Radiance of Selected Spectral Lines of the Hollow Cathode I = 2 A, U = 400 V

Tables Icon

Table II Systematic Relative Uncertainty Contributions

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ HC = ϕ λ HC ( λ ) d λ = ϕ λ SR ( λ ) F ( λ ) i HC ( λ ) / i SR ( λ ) d λ ,
I HC = ϕ HC / Ω             L HC = ϕ HC / ( Ω A ) .
{ Δ L HC / L HC } 2 = { Δ ϕ λ SR / ϕ λ SR } 2 + { Δ F / F } 2 + { Δ / } 2 { Δ ( i HC / i SR ) / ( i HC / i SR ) } 2 + { Δ Ω / Ω } 2 + { Δ A / A } 2

Metrics