Abstract

Thermal variations of the aperture of step-index optical fibers have been studied by measuring the transmitted power when a laser beam is launched with a variable incidence. For not too-long fibers only the rays launched with the higher incidence are affected. The variations of their transmittance have been accurately related to the refractive-index ones. Silicone clad silica fibers are sensitive to temperature because the silicone index varies much more the the silica index. On the contrary, due to a compensation phenomenon between index variations of core and cladding materials, PMMA core fibers have apertures that are nearly insensitive to temperature.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. F. Yeung, A. R. Johnston, “Effect of Temperature on Optical Fiber Transmission,” Appl. Opt. 17, 3703 (1978).
    [CrossRef] [PubMed]
  2. J. Dugas, M. Sotom, L. Martin, J. C. Cariou, “Accurate Characterization of the Transmittivity of Large-Diameter Multimode Optical Fibers,” Appl. Opt. 26, 4198 (1987).
    [CrossRef] [PubMed]
  3. J. Dugas, P. Michel, L. Martin, J. C. Cariou, “Behavior of the Refractive Index and of the Coefficient of Thermal Expansion of Silicone with Temperature,” Appl. Opt. 25, 3807 (1986).
    [CrossRef] [PubMed]
  4. P. Michel, J. Dugas, L. Martin, J. C. Cariou, “Thermal Variations of the Refractive Index of PMMA, PS,” J. Macromol. Sci. Phys. 25, 379 (1986).
    [CrossRef]
  5. C. Fabrello, M. Taoufiq, P. Destruel, E. Douhe, J. Dugas, “Variations Thermiques de ‘Indice de Réfraction de Copolymères Fluorés Utilisables comme Matériaux de Gaine dans les Fibres Optiques Polymères,” VIIe Journées Nationales d’Optique Guidée, Nice (3–4 Apr. 1986).
  6. H. M. Schleinitz, K. Square, P. G. Stephan, “Process for Low Attenuation Methacrylate Optical Fibers,” U.S. Patent4,161,500 (1979).

1987 (1)

1986 (2)

P. Michel, J. Dugas, L. Martin, J. C. Cariou, “Thermal Variations of the Refractive Index of PMMA, PS,” J. Macromol. Sci. Phys. 25, 379 (1986).
[CrossRef]

J. Dugas, P. Michel, L. Martin, J. C. Cariou, “Behavior of the Refractive Index and of the Coefficient of Thermal Expansion of Silicone with Temperature,” Appl. Opt. 25, 3807 (1986).
[CrossRef] [PubMed]

1978 (1)

Cariou, J. C.

Destruel, P.

C. Fabrello, M. Taoufiq, P. Destruel, E. Douhe, J. Dugas, “Variations Thermiques de ‘Indice de Réfraction de Copolymères Fluorés Utilisables comme Matériaux de Gaine dans les Fibres Optiques Polymères,” VIIe Journées Nationales d’Optique Guidée, Nice (3–4 Apr. 1986).

Douhe, E.

C. Fabrello, M. Taoufiq, P. Destruel, E. Douhe, J. Dugas, “Variations Thermiques de ‘Indice de Réfraction de Copolymères Fluorés Utilisables comme Matériaux de Gaine dans les Fibres Optiques Polymères,” VIIe Journées Nationales d’Optique Guidée, Nice (3–4 Apr. 1986).

Dugas, J.

J. Dugas, M. Sotom, L. Martin, J. C. Cariou, “Accurate Characterization of the Transmittivity of Large-Diameter Multimode Optical Fibers,” Appl. Opt. 26, 4198 (1987).
[CrossRef] [PubMed]

J. Dugas, P. Michel, L. Martin, J. C. Cariou, “Behavior of the Refractive Index and of the Coefficient of Thermal Expansion of Silicone with Temperature,” Appl. Opt. 25, 3807 (1986).
[CrossRef] [PubMed]

P. Michel, J. Dugas, L. Martin, J. C. Cariou, “Thermal Variations of the Refractive Index of PMMA, PS,” J. Macromol. Sci. Phys. 25, 379 (1986).
[CrossRef]

C. Fabrello, M. Taoufiq, P. Destruel, E. Douhe, J. Dugas, “Variations Thermiques de ‘Indice de Réfraction de Copolymères Fluorés Utilisables comme Matériaux de Gaine dans les Fibres Optiques Polymères,” VIIe Journées Nationales d’Optique Guidée, Nice (3–4 Apr. 1986).

Fabrello, C.

C. Fabrello, M. Taoufiq, P. Destruel, E. Douhe, J. Dugas, “Variations Thermiques de ‘Indice de Réfraction de Copolymères Fluorés Utilisables comme Matériaux de Gaine dans les Fibres Optiques Polymères,” VIIe Journées Nationales d’Optique Guidée, Nice (3–4 Apr. 1986).

Johnston, A. R.

Martin, L.

Michel, P.

P. Michel, J. Dugas, L. Martin, J. C. Cariou, “Thermal Variations of the Refractive Index of PMMA, PS,” J. Macromol. Sci. Phys. 25, 379 (1986).
[CrossRef]

J. Dugas, P. Michel, L. Martin, J. C. Cariou, “Behavior of the Refractive Index and of the Coefficient of Thermal Expansion of Silicone with Temperature,” Appl. Opt. 25, 3807 (1986).
[CrossRef] [PubMed]

Schleinitz, H. M.

H. M. Schleinitz, K. Square, P. G. Stephan, “Process for Low Attenuation Methacrylate Optical Fibers,” U.S. Patent4,161,500 (1979).

Sotom, M.

Square, K.

H. M. Schleinitz, K. Square, P. G. Stephan, “Process for Low Attenuation Methacrylate Optical Fibers,” U.S. Patent4,161,500 (1979).

Stephan, P. G.

H. M. Schleinitz, K. Square, P. G. Stephan, “Process for Low Attenuation Methacrylate Optical Fibers,” U.S. Patent4,161,500 (1979).

Taoufiq, M.

C. Fabrello, M. Taoufiq, P. Destruel, E. Douhe, J. Dugas, “Variations Thermiques de ‘Indice de Réfraction de Copolymères Fluorés Utilisables comme Matériaux de Gaine dans les Fibres Optiques Polymères,” VIIe Journées Nationales d’Optique Guidée, Nice (3–4 Apr. 1986).

Yeung, W. F.

Appl. Opt. (3)

J. Macromol. Sci. Phys. (1)

P. Michel, J. Dugas, L. Martin, J. C. Cariou, “Thermal Variations of the Refractive Index of PMMA, PS,” J. Macromol. Sci. Phys. 25, 379 (1986).
[CrossRef]

Other (2)

C. Fabrello, M. Taoufiq, P. Destruel, E. Douhe, J. Dugas, “Variations Thermiques de ‘Indice de Réfraction de Copolymères Fluorés Utilisables comme Matériaux de Gaine dans les Fibres Optiques Polymères,” VIIe Journées Nationales d’Optique Guidée, Nice (3–4 Apr. 1986).

H. M. Schleinitz, K. Square, P. G. Stephan, “Process for Low Attenuation Methacrylate Optical Fibers,” U.S. Patent4,161,500 (1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Transmittance variation vs the incidence angle of a laser beam launched in a silica–silicone fiber for various temperatures: (a) fiber length, 2 m; (b) fiber length, 44 m.

Fig. 2
Fig. 2

Thermal variation of the angular aperture of the silica–silicone PCS 1000 optical fiber.

Fig. 3
Fig. 3

Transmittance variation vs the incidence angle of a laser beam launched in PMMA-core fibers: (a) ESKA EH-4001; (b) CROFON OE-1040.

Fig. 4
Fig. 4

Thermal variation of the angular aperture of the polymer ESKA EH-4001 optical fiber.

Fig. 5
Fig. 5

Thermal variation of the angular aperture of the polymer CROFON OE-4001 optical fiber.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

sin θ 0 = n 1 2 - n 2 2 ,
d θ 0 d T = ( n 1 d n 1 d T - n 2 d n 2 d T ) / sin θ 0 · cos θ 0 .

Metrics