Abstract

The effect of periodic strain on the beat wavelength between the guided LP01 and the leaky LP11 modes is approximated around the LP11 mode cutoff. An abrupt change of the beat wavelength as a function of optical wavelength signifies the onset of the cutoff region. An order parameter is suggested to characterize the transition of the LP11 mode from a guided to a cladding mode.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Grebel, G. J. Herskowitz, M. Mezhoudi, “Measurements of Cutoff Wavelength of Single-Mode Fiber with Periodic Perturbations,” Electron. Lett. 22, 1135 (1986).
    [CrossRef]
  2. D. Gloge, “Weakly Guiding Fibers,” Appl. Opt. 10, 2252 (1971).
    [CrossRef] [PubMed]
  3. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).
  4. H. Grebel, G. J. Herskowitz, “Effect of Strain in Periodically Deformed Single-Mode Optical Fibers,” Appl. Opt. 26, 2155 (1987).
    [CrossRef] [PubMed]
  5. W. A. Gambling, H. Matsumura, C. M. Ragdale, “Field Deformation in a Curved Single-Mode Fiber,” Electron. Lett. 14, 130 (1978).
    [CrossRef]

1987 (1)

1986 (1)

H. Grebel, G. J. Herskowitz, M. Mezhoudi, “Measurements of Cutoff Wavelength of Single-Mode Fiber with Periodic Perturbations,” Electron. Lett. 22, 1135 (1986).
[CrossRef]

1978 (1)

W. A. Gambling, H. Matsumura, C. M. Ragdale, “Field Deformation in a Curved Single-Mode Fiber,” Electron. Lett. 14, 130 (1978).
[CrossRef]

1971 (1)

Gambling, W. A.

W. A. Gambling, H. Matsumura, C. M. Ragdale, “Field Deformation in a Curved Single-Mode Fiber,” Electron. Lett. 14, 130 (1978).
[CrossRef]

Gloge, D.

Grebel, H.

H. Grebel, G. J. Herskowitz, “Effect of Strain in Periodically Deformed Single-Mode Optical Fibers,” Appl. Opt. 26, 2155 (1987).
[CrossRef] [PubMed]

H. Grebel, G. J. Herskowitz, M. Mezhoudi, “Measurements of Cutoff Wavelength of Single-Mode Fiber with Periodic Perturbations,” Electron. Lett. 22, 1135 (1986).
[CrossRef]

Herskowitz, G. J.

H. Grebel, G. J. Herskowitz, “Effect of Strain in Periodically Deformed Single-Mode Optical Fibers,” Appl. Opt. 26, 2155 (1987).
[CrossRef] [PubMed]

H. Grebel, G. J. Herskowitz, M. Mezhoudi, “Measurements of Cutoff Wavelength of Single-Mode Fiber with Periodic Perturbations,” Electron. Lett. 22, 1135 (1986).
[CrossRef]

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).

Matsumura, H.

W. A. Gambling, H. Matsumura, C. M. Ragdale, “Field Deformation in a Curved Single-Mode Fiber,” Electron. Lett. 14, 130 (1978).
[CrossRef]

Mezhoudi, M.

H. Grebel, G. J. Herskowitz, M. Mezhoudi, “Measurements of Cutoff Wavelength of Single-Mode Fiber with Periodic Perturbations,” Electron. Lett. 22, 1135 (1986).
[CrossRef]

Ragdale, C. M.

W. A. Gambling, H. Matsumura, C. M. Ragdale, “Field Deformation in a Curved Single-Mode Fiber,” Electron. Lett. 14, 130 (1978).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (2)

H. Grebel, G. J. Herskowitz, M. Mezhoudi, “Measurements of Cutoff Wavelength of Single-Mode Fiber with Periodic Perturbations,” Electron. Lett. 22, 1135 (1986).
[CrossRef]

W. A. Gambling, H. Matsumura, C. M. Ragdale, “Field Deformation in a Curved Single-Mode Fiber,” Electron. Lett. 14, 130 (1978).
[CrossRef]

Other (1)

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Irregularity detected in the distortion wavelength (three times the beat wavelength) as a function of optical wavelength for a Furukawa fiber with λc = 1.35 μm.

Fig. 2
Fig. 2

Same curve as in Fig. 1 but for a Sumitomo fiber with λc = 1.1 μm.

Fig. 3
Fig. 3

Magnitude of the LP11 leaky mode for various optical wavelengths with λc = 1.477 μm.

Fig. 4
Fig. 4

Mean power position and standard deviation values for the LP11 mode as a function of optical wavelength.

Fig. 5
Fig. 5

Calculated distortion wavelength (three times the beat wavelength) between the fundamental LP01 and the cladding LP11 modes.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

{ 2 r 2 + 1 r r + [ β r i 2 - ( ν r ) 2 ] } E 11 = 0.
r = r d r E 11 2 r d r E 11 2 ,
Δ β 11 = β 11 χ x 11 / R ,
Δ β 01 = 2 β 01 ( k n r 0 ) 4 / R ,
1 R = 32 A ( k 0 / 2 π ) 2 .
Λ = 2 π [ ( β 01 + Δ β 01 ) - ( β 11 - Δ β 11 ) ] .

Metrics