Abstract

Symmetry properties of the converse piezoelectric effect are investigated for their use in fiber-optic sensing of individual electric field components. Three basic sensor designs are analyzed in detail. Suitable sensor materials are identified and relevant material properties are discussed. The sensitivity of the sensor to a specified field component is experimentally verified. A dynamic range of approximately 5 orders of magnitude is found for frequencies in the kilohertz range. The sensor concept is compared to electrooptic sensors.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Sasano, “Laser CT and Laser PD for EHV Power Transmission Lines,” Electr. Eng. in Jpn. (Engl. transl. of Denki Gakkai Zasshi) 93, 91 (1973).
    [CrossRef]
  2. G. A. Massey, D. C. Erickson, R. A. Kadlec, “Electromagnetic Field Components: Their Measurement Using Linear Electrooptic and Magnetooptic Effects,” Appl. Opt. 14, 2712 (1975).
    [CrossRef] [PubMed]
  3. R. E. Hebner, R. A. Malewski, E. C. Cassidy, “Optical Methods of Electrical Measurements at High Voltage Levels,” Proc. IEEE 65, 1524 (1977).
    [CrossRef]
  4. A. J. Rogers, “Optical Measurement of Current and Voltage on Optical Power Systems,” Electr. Power Appl. 2, 120 (1979).
    [CrossRef]
  5. Y. Hamasaki, H. Gotoh, M. Katoh, S. Takeuchi, “OPSEF: An Optical Sensor for Measurement of High Electric Field Intensity,” Electron. Lett. 16, 406 (1980).
    [CrossRef]
  6. K. Hidaka, H. Fujita, “A New Method of Electric Field Measurements in Corona Discharge Using Pockels Device,” J. Appl. Phys. 53, 5999 (1982).
    [CrossRef]
  7. K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-Optic Current and Voltage Sensors Using a Bi12GeO20 Single Crystal,” IEEE/OSA J. Lightwave Technol. LT-1, 93 (1983).
    [CrossRef]
  8. W. Epping, A. Kuchler, A. Schwab, “Elektrische Feldstarkemessung mit doppelbrechenden und optisch aktiven Kristallen,” Arch. Elektrotech. Berlin 67, 329 (1984).
    [CrossRef]
  9. S. R. M. Robertson, A. J. Rogers, “Measurement of DC Electric Fields Using the Electro-Optic Effect,” IEE Proc. 132, 195 (1985).
  10. N. A. F. Jaeger, L. Young, “Asymmetric Slab and Strip-Loaded Integrated Optic Devices for the Measurement of Large Electric Fields,” IEEE/OSA J. Lightwave Technol. LT-5, 745 (1987).
    [CrossRef]
  11. M. Kuribara, Y. Takeda, “Liquid Core Optical Fiber for Voltage Measurement Using Kerr Effect,” Electron. Lett. 19, 133 (1983).
    [CrossRef]
  12. M. C. Farries, A. J. Rogers, “Temperature Dependence of the Kerr Effect in a Silica Optical Fiber,” Electron. Lett. 19, 890 (1983).
    [CrossRef]
  13. P. D. DeSouza, M. D. Mermelstein, “Electric Field Detection with a Piezoelectric Polymer-Jacketed Single-Mode Optical Fiber,” Appl. Opt. 21, 4214 (1982).
    [CrossRef] [PubMed]
  14. L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehart, T. Wei, “Electric Field Sensitive Optical Fiber Using Piezoelectric Polymer Coating,” Electron. Lett. 18, 327 (1982).
    [CrossRef]
  15. K. P. Koo, G. H. Sigel, “An Electric Field Sensor Utilizing a Piezoelectric Polyvinylidene Fluoride (PVF2) Film in a Single-Mode Fiber Interferometer,” IEEE J. Quantum Electron. QE-18, 670 (1982).
    [CrossRef]
  16. T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982).
    [CrossRef]
  17. M. D. Mermelstein, “Optical-Fiber Copolymer-Film Electric-Field Sensor,” Appl. Opt. 22, 1006 (1983).
    [CrossRef] [PubMed]
  18. M. Imai, H. Tanizawa, Y. Ohtsuka, Y. Takase, A. Odajima, “Piezoelectric Copolymer Jacketed Single-Mode-Fibers for Electric-Field Sensor Applications,” J. Appl. Phys. 60, 1916 (1986).
    [CrossRef]
  19. To be published in a forthcoming paper.
  20. J. F. Nye, Physical Properties of CrystalsOxford U.P., London, 1967).
  21. For our sensing application, the naked piezoelectric material is exposed to an electric field, whereas in certain transducer applications the electric field is applied by means of metallic contacts. In the latter case the internal field is independent of ∊, whereas in the former case it is not. It should be noted, however, that in general the internal field is not simply a linear function of the reciprocal permittivity but depends on the sensor geometry as well.
  22. Landoldt-Börnstein, “Elastic, Piezoelectric, Piezooptic, and Electrooptic Constants of Crystals,” K.-H. Hellwege, A. M. Hellwege, Eds., New Series III1,2; Springer-Verlag1966 and references therein.
  23. As described by Massey et al. sensing of individual field components can also be achieved by appropriate electrooptic crystals (see Ref. 2).

1987

N. A. F. Jaeger, L. Young, “Asymmetric Slab and Strip-Loaded Integrated Optic Devices for the Measurement of Large Electric Fields,” IEEE/OSA J. Lightwave Technol. LT-5, 745 (1987).
[CrossRef]

1986

M. Imai, H. Tanizawa, Y. Ohtsuka, Y. Takase, A. Odajima, “Piezoelectric Copolymer Jacketed Single-Mode-Fibers for Electric-Field Sensor Applications,” J. Appl. Phys. 60, 1916 (1986).
[CrossRef]

1985

S. R. M. Robertson, A. J. Rogers, “Measurement of DC Electric Fields Using the Electro-Optic Effect,” IEE Proc. 132, 195 (1985).

1984

W. Epping, A. Kuchler, A. Schwab, “Elektrische Feldstarkemessung mit doppelbrechenden und optisch aktiven Kristallen,” Arch. Elektrotech. Berlin 67, 329 (1984).
[CrossRef]

1983

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-Optic Current and Voltage Sensors Using a Bi12GeO20 Single Crystal,” IEEE/OSA J. Lightwave Technol. LT-1, 93 (1983).
[CrossRef]

M. D. Mermelstein, “Optical-Fiber Copolymer-Film Electric-Field Sensor,” Appl. Opt. 22, 1006 (1983).
[CrossRef] [PubMed]

M. Kuribara, Y. Takeda, “Liquid Core Optical Fiber for Voltage Measurement Using Kerr Effect,” Electron. Lett. 19, 133 (1983).
[CrossRef]

M. C. Farries, A. J. Rogers, “Temperature Dependence of the Kerr Effect in a Silica Optical Fiber,” Electron. Lett. 19, 890 (1983).
[CrossRef]

1982

P. D. DeSouza, M. D. Mermelstein, “Electric Field Detection with a Piezoelectric Polymer-Jacketed Single-Mode Optical Fiber,” Appl. Opt. 21, 4214 (1982).
[CrossRef] [PubMed]

L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehart, T. Wei, “Electric Field Sensitive Optical Fiber Using Piezoelectric Polymer Coating,” Electron. Lett. 18, 327 (1982).
[CrossRef]

K. P. Koo, G. H. Sigel, “An Electric Field Sensor Utilizing a Piezoelectric Polyvinylidene Fluoride (PVF2) Film in a Single-Mode Fiber Interferometer,” IEEE J. Quantum Electron. QE-18, 670 (1982).
[CrossRef]

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

K. Hidaka, H. Fujita, “A New Method of Electric Field Measurements in Corona Discharge Using Pockels Device,” J. Appl. Phys. 53, 5999 (1982).
[CrossRef]

1980

Y. Hamasaki, H. Gotoh, M. Katoh, S. Takeuchi, “OPSEF: An Optical Sensor for Measurement of High Electric Field Intensity,” Electron. Lett. 16, 406 (1980).
[CrossRef]

1979

A. J. Rogers, “Optical Measurement of Current and Voltage on Optical Power Systems,” Electr. Power Appl. 2, 120 (1979).
[CrossRef]

1977

R. E. Hebner, R. A. Malewski, E. C. Cassidy, “Optical Methods of Electrical Measurements at High Voltage Levels,” Proc. IEEE 65, 1524 (1977).
[CrossRef]

1975

1973

T. Sasano, “Laser CT and Laser PD for EHV Power Transmission Lines,” Electr. Eng. in Jpn. (Engl. transl. of Denki Gakkai Zasshi) 93, 91 (1973).
[CrossRef]

Cassidy, E. C.

R. E. Hebner, R. A. Malewski, E. C. Cassidy, “Optical Methods of Electrical Measurements at High Voltage Levels,” Proc. IEEE 65, 1524 (1977).
[CrossRef]

DeSouza, P. D.

Donalds, L. J.

L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehart, T. Wei, “Electric Field Sensitive Optical Fiber Using Piezoelectric Polymer Coating,” Electron. Lett. 18, 327 (1982).
[CrossRef]

Epping, W.

W. Epping, A. Kuchler, A. Schwab, “Elektrische Feldstarkemessung mit doppelbrechenden und optisch aktiven Kristallen,” Arch. Elektrotech. Berlin 67, 329 (1984).
[CrossRef]

Erickson, D. C.

Farries, M. C.

M. C. Farries, A. J. Rogers, “Temperature Dependence of the Kerr Effect in a Silica Optical Fiber,” Electron. Lett. 19, 890 (1983).
[CrossRef]

French, W. G.

L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehart, T. Wei, “Electric Field Sensitive Optical Fiber Using Piezoelectric Polymer Coating,” Electron. Lett. 18, 327 (1982).
[CrossRef]

Fujita, H.

K. Hidaka, H. Fujita, “A New Method of Electric Field Measurements in Corona Discharge Using Pockels Device,” J. Appl. Phys. 53, 5999 (1982).
[CrossRef]

Gotoh, H.

Y. Hamasaki, H. Gotoh, M. Katoh, S. Takeuchi, “OPSEF: An Optical Sensor for Measurement of High Electric Field Intensity,” Electron. Lett. 16, 406 (1980).
[CrossRef]

Hamasaki, Y.

Y. Hamasaki, H. Gotoh, M. Katoh, S. Takeuchi, “OPSEF: An Optical Sensor for Measurement of High Electric Field Intensity,” Electron. Lett. 16, 406 (1980).
[CrossRef]

Hebner, R. E.

R. E. Hebner, R. A. Malewski, E. C. Cassidy, “Optical Methods of Electrical Measurements at High Voltage Levels,” Proc. IEEE 65, 1524 (1977).
[CrossRef]

Hidaka, K.

K. Hidaka, H. Fujita, “A New Method of Electric Field Measurements in Corona Discharge Using Pockels Device,” J. Appl. Phys. 53, 5999 (1982).
[CrossRef]

Ida, Y.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-Optic Current and Voltage Sensors Using a Bi12GeO20 Single Crystal,” IEEE/OSA J. Lightwave Technol. LT-1, 93 (1983).
[CrossRef]

Imai, M.

M. Imai, H. Tanizawa, Y. Ohtsuka, Y. Takase, A. Odajima, “Piezoelectric Copolymer Jacketed Single-Mode-Fibers for Electric-Field Sensor Applications,” J. Appl. Phys. 60, 1916 (1986).
[CrossRef]

Itoh, K.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Jaeger, N. A. F.

N. A. F. Jaeger, L. Young, “Asymmetric Slab and Strip-Loaded Integrated Optic Devices for the Measurement of Large Electric Fields,” IEEE/OSA J. Lightwave Technol. LT-5, 745 (1987).
[CrossRef]

Kadlec, R. A.

Katoh, M.

Y. Hamasaki, H. Gotoh, M. Katoh, S. Takeuchi, “OPSEF: An Optical Sensor for Measurement of High Electric Field Intensity,” Electron. Lett. 16, 406 (1980).
[CrossRef]

Koo, K. P.

K. P. Koo, G. H. Sigel, “An Electric Field Sensor Utilizing a Piezoelectric Polyvinylidene Fluoride (PVF2) Film in a Single-Mode Fiber Interferometer,” IEEE J. Quantum Electron. QE-18, 670 (1982).
[CrossRef]

Kuchler, A.

W. Epping, A. Kuchler, A. Schwab, “Elektrische Feldstarkemessung mit doppelbrechenden und optisch aktiven Kristallen,” Arch. Elektrotech. Berlin 67, 329 (1984).
[CrossRef]

Kuribara, M.

M. Kuribara, Y. Takeda, “Liquid Core Optical Fiber for Voltage Measurement Using Kerr Effect,” Electron. Lett. 19, 133 (1983).
[CrossRef]

Kurosawa, K.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Kyuma, K.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-Optic Current and Voltage Sensors Using a Bi12GeO20 Single Crystal,” IEEE/OSA J. Lightwave Technol. LT-1, 93 (1983).
[CrossRef]

Landoldt-Börnstein,

Landoldt-Börnstein, “Elastic, Piezoelectric, Piezooptic, and Electrooptic Constants of Crystals,” K.-H. Hellwege, A. M. Hellwege, Eds., New Series III1,2; Springer-Verlag1966 and references therein.

Malewski, R. A.

R. E. Hebner, R. A. Malewski, E. C. Cassidy, “Optical Methods of Electrical Measurements at High Voltage Levels,” Proc. IEEE 65, 1524 (1977).
[CrossRef]

Massey, G. A.

Mermelstein, M. D.

Mikami, N.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-Optic Current and Voltage Sensors Using a Bi12GeO20 Single Crystal,” IEEE/OSA J. Lightwave Technol. LT-1, 93 (1983).
[CrossRef]

Mitchell, W. C.

L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehart, T. Wei, “Electric Field Sensitive Optical Fiber Using Piezoelectric Polymer Coating,” Electron. Lett. 18, 327 (1982).
[CrossRef]

Nunoshita, M.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-Optic Current and Voltage Sensors Using a Bi12GeO20 Single Crystal,” IEEE/OSA J. Lightwave Technol. LT-1, 93 (1983).
[CrossRef]

Nye, J. F.

J. F. Nye, Physical Properties of CrystalsOxford U.P., London, 1967).

Odajima, A.

M. Imai, H. Tanizawa, Y. Ohtsuka, Y. Takase, A. Odajima, “Piezoelectric Copolymer Jacketed Single-Mode-Fibers for Electric-Field Sensor Applications,” J. Appl. Phys. 60, 1916 (1986).
[CrossRef]

Ohtsuka, Y.

M. Imai, H. Tanizawa, Y. Ohtsuka, Y. Takase, A. Odajima, “Piezoelectric Copolymer Jacketed Single-Mode-Fibers for Electric-Field Sensor Applications,” J. Appl. Phys. 60, 1916 (1986).
[CrossRef]

Ose, T.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Robertson, S. R. M.

S. R. M. Robertson, A. J. Rogers, “Measurement of DC Electric Fields Using the Electro-Optic Effect,” IEE Proc. 132, 195 (1985).

Rogers, A. J.

S. R. M. Robertson, A. J. Rogers, “Measurement of DC Electric Fields Using the Electro-Optic Effect,” IEE Proc. 132, 195 (1985).

M. C. Farries, A. J. Rogers, “Temperature Dependence of the Kerr Effect in a Silica Optical Fiber,” Electron. Lett. 19, 890 (1983).
[CrossRef]

A. J. Rogers, “Optical Measurement of Current and Voltage on Optical Power Systems,” Electr. Power Appl. 2, 120 (1979).
[CrossRef]

Sasano, T.

T. Sasano, “Laser CT and Laser PD for EHV Power Transmission Lines,” Electr. Eng. in Jpn. (Engl. transl. of Denki Gakkai Zasshi) 93, 91 (1973).
[CrossRef]

Schwab, A.

W. Epping, A. Kuchler, A. Schwab, “Elektrische Feldstarkemessung mit doppelbrechenden und optisch aktiven Kristallen,” Arch. Elektrotech. Berlin 67, 329 (1984).
[CrossRef]

Sigel, G. H.

K. P. Koo, G. H. Sigel, “An Electric Field Sensor Utilizing a Piezoelectric Polyvinylidene Fluoride (PVF2) Film in a Single-Mode Fiber Interferometer,” IEEE J. Quantum Electron. QE-18, 670 (1982).
[CrossRef]

Swinehart, R. M.

L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehart, T. Wei, “Electric Field Sensitive Optical Fiber Using Piezoelectric Polymer Coating,” Electron. Lett. 18, 327 (1982).
[CrossRef]

Tai, S.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-Optic Current and Voltage Sensors Using a Bi12GeO20 Single Crystal,” IEEE/OSA J. Lightwave Technol. LT-1, 93 (1983).
[CrossRef]

Takase, Y.

M. Imai, H. Tanizawa, Y. Ohtsuka, Y. Takase, A. Odajima, “Piezoelectric Copolymer Jacketed Single-Mode-Fibers for Electric-Field Sensor Applications,” J. Appl. Phys. 60, 1916 (1986).
[CrossRef]

Takeda, Y.

M. Kuribara, Y. Takeda, “Liquid Core Optical Fiber for Voltage Measurement Using Kerr Effect,” Electron. Lett. 19, 133 (1983).
[CrossRef]

Takeuchi, S.

Y. Hamasaki, H. Gotoh, M. Katoh, S. Takeuchi, “OPSEF: An Optical Sensor for Measurement of High Electric Field Intensity,” Electron. Lett. 16, 406 (1980).
[CrossRef]

Tanizawa, H.

M. Imai, H. Tanizawa, Y. Ohtsuka, Y. Takase, A. Odajima, “Piezoelectric Copolymer Jacketed Single-Mode-Fibers for Electric-Field Sensor Applications,” J. Appl. Phys. 60, 1916 (1986).
[CrossRef]

Wei, T.

L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehart, T. Wei, “Electric Field Sensitive Optical Fiber Using Piezoelectric Polymer Coating,” Electron. Lett. 18, 327 (1982).
[CrossRef]

Yoshino, T.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Young, L.

N. A. F. Jaeger, L. Young, “Asymmetric Slab and Strip-Loaded Integrated Optic Devices for the Measurement of Large Electric Fields,” IEEE/OSA J. Lightwave Technol. LT-5, 745 (1987).
[CrossRef]

Appl. Opt.

Arch. Elektrotech. Berlin

W. Epping, A. Kuchler, A. Schwab, “Elektrische Feldstarkemessung mit doppelbrechenden und optisch aktiven Kristallen,” Arch. Elektrotech. Berlin 67, 329 (1984).
[CrossRef]

Electr. Eng. in Jpn.

T. Sasano, “Laser CT and Laser PD for EHV Power Transmission Lines,” Electr. Eng. in Jpn. (Engl. transl. of Denki Gakkai Zasshi) 93, 91 (1973).
[CrossRef]

Electr. Power Appl.

A. J. Rogers, “Optical Measurement of Current and Voltage on Optical Power Systems,” Electr. Power Appl. 2, 120 (1979).
[CrossRef]

Electron. Lett.

Y. Hamasaki, H. Gotoh, M. Katoh, S. Takeuchi, “OPSEF: An Optical Sensor for Measurement of High Electric Field Intensity,” Electron. Lett. 16, 406 (1980).
[CrossRef]

L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehart, T. Wei, “Electric Field Sensitive Optical Fiber Using Piezoelectric Polymer Coating,” Electron. Lett. 18, 327 (1982).
[CrossRef]

M. Kuribara, Y. Takeda, “Liquid Core Optical Fiber for Voltage Measurement Using Kerr Effect,” Electron. Lett. 19, 133 (1983).
[CrossRef]

M. C. Farries, A. J. Rogers, “Temperature Dependence of the Kerr Effect in a Silica Optical Fiber,” Electron. Lett. 19, 890 (1983).
[CrossRef]

IEE Proc.

S. R. M. Robertson, A. J. Rogers, “Measurement of DC Electric Fields Using the Electro-Optic Effect,” IEE Proc. 132, 195 (1985).

IEEE J. Quantum Electron.

K. P. Koo, G. H. Sigel, “An Electric Field Sensor Utilizing a Piezoelectric Polyvinylidene Fluoride (PVF2) Film in a Single-Mode Fiber Interferometer,” IEEE J. Quantum Electron. QE-18, 670 (1982).
[CrossRef]

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

IEEE/OSA J. Lightwave Technol.

N. A. F. Jaeger, L. Young, “Asymmetric Slab and Strip-Loaded Integrated Optic Devices for the Measurement of Large Electric Fields,” IEEE/OSA J. Lightwave Technol. LT-5, 745 (1987).
[CrossRef]

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-Optic Current and Voltage Sensors Using a Bi12GeO20 Single Crystal,” IEEE/OSA J. Lightwave Technol. LT-1, 93 (1983).
[CrossRef]

J. Appl. Phys.

K. Hidaka, H. Fujita, “A New Method of Electric Field Measurements in Corona Discharge Using Pockels Device,” J. Appl. Phys. 53, 5999 (1982).
[CrossRef]

M. Imai, H. Tanizawa, Y. Ohtsuka, Y. Takase, A. Odajima, “Piezoelectric Copolymer Jacketed Single-Mode-Fibers for Electric-Field Sensor Applications,” J. Appl. Phys. 60, 1916 (1986).
[CrossRef]

Proc. IEEE

R. E. Hebner, R. A. Malewski, E. C. Cassidy, “Optical Methods of Electrical Measurements at High Voltage Levels,” Proc. IEEE 65, 1524 (1977).
[CrossRef]

Other

To be published in a forthcoming paper.

J. F. Nye, Physical Properties of CrystalsOxford U.P., London, 1967).

For our sensing application, the naked piezoelectric material is exposed to an electric field, whereas in certain transducer applications the electric field is applied by means of metallic contacts. In the latter case the internal field is independent of ∊, whereas in the former case it is not. It should be noted, however, that in general the internal field is not simply a linear function of the reciprocal permittivity but depends on the sensor geometry as well.

Landoldt-Börnstein, “Elastic, Piezoelectric, Piezooptic, and Electrooptic Constants of Crystals,” K.-H. Hellwege, A. M. Hellwege, Eds., New Series III1,2; Springer-Verlag1966 and references therein.

As described by Massey et al. sensing of individual field components can also be achieved by appropriate electrooptic crystals (see Ref. 2).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Sensing of individual electric field components: field components represented by bold arrows produce a sensor response, no response occurs for field components parallel to the light arrows.

Fig. 2
Fig. 2

Sensor signal as a function of electric field. The field is applied perpendicular to the disk.

Fig. 3
Fig. 3

Sensor signal as a function of field direction.

Tables (3)

Tables Icon

Table I Crystallographic Point Groups and Orientations for Disk-Shaped Sensor Elements

Tables Icon

Table II Crystallographic Point Groups and Orientations for Platelet-Type Sensor Elements, If the Field Component Parallel to the Fiber is to be Measured

Tables Icon

Table III Crystallographic Point Groups and Orientations for Platelet-Type Sensor Elements, if the Field Component Perpendicular to the Platelet Plane is to be Measured

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( d 11 - d 11 0 d 14 0 0 0 0 0 0 - d 14 - 2 d 11 0 0 0 0 0 0 ) .

Metrics