Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980).
  2. A. E. Roche et al., “Performance Analysis for the Cryogenic Etalon Spectrometer on the Upper Atmospheric Research Satellite,” Proc. Soc. Photo-Opt. Instrum. Eng. 364, 46 (1982).
  3. C. A. Reber, “Upper Atmosphere Research Satellite (UARS) Mission,” NASA Document 430-1003-001 (May1985).

1985 (1)

C. A. Reber, “Upper Atmosphere Research Satellite (UARS) Mission,” NASA Document 430-1003-001 (May1985).

1982 (1)

A. E. Roche et al., “Performance Analysis for the Cryogenic Etalon Spectrometer on the Upper Atmospheric Research Satellite,” Proc. Soc. Photo-Opt. Instrum. Eng. 364, 46 (1982).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980).

Reber, C. A.

C. A. Reber, “Upper Atmosphere Research Satellite (UARS) Mission,” NASA Document 430-1003-001 (May1985).

Roche, A. E.

A. E. Roche et al., “Performance Analysis for the Cryogenic Etalon Spectrometer on the Upper Atmospheric Research Satellite,” Proc. Soc. Photo-Opt. Instrum. Eng. 364, 46 (1982).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980).

NASA Document 430-1003-001 (1)

C. A. Reber, “Upper Atmosphere Research Satellite (UARS) Mission,” NASA Document 430-1003-001 (May1985).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

A. E. Roche et al., “Performance Analysis for the Cryogenic Etalon Spectrometer on the Upper Atmospheric Research Satellite,” Proc. Soc. Photo-Opt. Instrum. Eng. 364, 46 (1982).

Other (1)

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 1 1 + 4 R ( 1 - R ) 2 sin 2 δ / 2 ,
δ = 4 π n d cos θ λ ,
( FWHM ) = ( FSR ) / F ,
F = π R 1 / 2 / ( 1 - R ) .
A = a t t + a t t r 2 exp ( i δ ) + a t t r 4 exp ( 2 i δ ) + ,
A = a ( 1 - R ) ( 1 + R exp ( i δ ) + R 2 exp ( 2 i δ ) + ) .
T + R + A = 1 ,
I = I 0 ( 1 - A 1 - R ) 2 1 1 + 4 R ( 1 - R ) 2 sin 2 δ / 2 .
A = a t t exp ( - k / 2 ) + a t t exp ( - 3 k / 2 ) r 2 exp ( i δ ) + a t t exp ( - 5 k / 2 ) r 4 exp ( 2 i δ ) + ,
A = a ( 1 - R ) exp ( - k / 2 ) ( 1 + R exp ( - k ) exp ( i δ ) + R 2 exp ( - 2 k ) exp ( 2 i δ ) + )
= a ( 1 - R ) exp ( - k / 2 ) [ 1 - R exp ( - k ) ] . [ 1 - R exp ( - k ) ] × [ 1 + R exp ( - k ) exp ( i δ ) + R 2 exp ( - 2 k ) exp ( 2 i δ ) + ] .
I = I 0 ( 1 - R ) 2 exp ( - k ) [ 1 - R exp ( - k ) ] 2 · 1 1 + 4 R ( 1 - R ) 2 sin 2 δ / 2 .
T peak = ( 1 - 0.925 ) 2 ( 0.98 ) / ( 1 - 0.907 ) 2 64 % .
I = I 0 ( 1 - R - A ) 2 exp ( - k ) [ 1 - R exp ( - k ) ] 2 · 1 1 + 4 R ( 1 - R ) 2 sin 2 δ / 2 ,

Metrics