Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Gaskill et al., “Non-Destructive Characterization of Carrier Concentration and Thickness Uniformity for Semiconductors Using Infrared Reflectance Spectroscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 794, 231 (1987).
  2. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970).
  3. T. Moss, Optical Properties of Semiconductors (Butterworth, London, 1959).
  4. H. Casey et al., “Refractive Index of AlxGa1−xAs Between 1.2 and 1.8 eV,” Appl. Phys. Lett. 24(2), 63 (1974).
    [CrossRef]
  5. A. SpringThorpe, P. Mandeville, Bell-Northern Research; unpublished results.
  6. L. Tarof, C. Miner, A. SpringThorpe, “Epitaxial Layer Thickness Measurements by Reflection Spectroscopy,” submitted to J. Electron. Materials, 1988.

1987

D. K. Gaskill et al., “Non-Destructive Characterization of Carrier Concentration and Thickness Uniformity for Semiconductors Using Infrared Reflectance Spectroscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 794, 231 (1987).

1974

H. Casey et al., “Refractive Index of AlxGa1−xAs Between 1.2 and 1.8 eV,” Appl. Phys. Lett. 24(2), 63 (1974).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970).

Casey, H.

H. Casey et al., “Refractive Index of AlxGa1−xAs Between 1.2 and 1.8 eV,” Appl. Phys. Lett. 24(2), 63 (1974).
[CrossRef]

Gaskill, D. K.

D. K. Gaskill et al., “Non-Destructive Characterization of Carrier Concentration and Thickness Uniformity for Semiconductors Using Infrared Reflectance Spectroscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 794, 231 (1987).

Mandeville, P.

A. SpringThorpe, P. Mandeville, Bell-Northern Research; unpublished results.

Miner, C.

L. Tarof, C. Miner, A. SpringThorpe, “Epitaxial Layer Thickness Measurements by Reflection Spectroscopy,” submitted to J. Electron. Materials, 1988.

Moss, T.

T. Moss, Optical Properties of Semiconductors (Butterworth, London, 1959).

SpringThorpe, A.

A. SpringThorpe, P. Mandeville, Bell-Northern Research; unpublished results.

L. Tarof, C. Miner, A. SpringThorpe, “Epitaxial Layer Thickness Measurements by Reflection Spectroscopy,” submitted to J. Electron. Materials, 1988.

Tarof, L.

L. Tarof, C. Miner, A. SpringThorpe, “Epitaxial Layer Thickness Measurements by Reflection Spectroscopy,” submitted to J. Electron. Materials, 1988.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970).

Appl. Phys. Lett.

H. Casey et al., “Refractive Index of AlxGa1−xAs Between 1.2 and 1.8 eV,” Appl. Phys. Lett. 24(2), 63 (1974).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

D. K. Gaskill et al., “Non-Destructive Characterization of Carrier Concentration and Thickness Uniformity for Semiconductors Using Infrared Reflectance Spectroscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 794, 231 (1987).

Other

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970).

T. Moss, Optical Properties of Semiconductors (Butterworth, London, 1959).

A. SpringThorpe, P. Mandeville, Bell-Northern Research; unpublished results.

L. Tarof, C. Miner, A. SpringThorpe, “Epitaxial Layer Thickness Measurements by Reflection Spectroscopy,” submitted to J. Electron. Materials, 1988.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Spectral scan ofAl0.3Ga0.7As. The thickness of this layer is 2.23 μm. (b) Spectral scan of Al0.7Ga033As. The thickness of this layer is 0.80 μm.

Fig. 2
Fig. 2

Optical thickness vs calibrated SEM thickness for two compositions of Alx–Ga1−xAs.

Fig. 3
Fig. 3

Epilayer thickness wafer map of Al0.5Ga0.5As normalized to best fit.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t optical = n ( 0 ) t = Δ m 2 λ 1 λ 2 λ 2 - λ 1 ,

Metrics