Abstract

The performance of IR sensors for target detection is analyzed with model sensat. The model calculates the radiometric relations for passive IR sensors with up to three homogeneous objects in the instantaneous field of view. For the atmospheric part, the computer code lowtran-6 is used within sensat. The sensor model has been improved by introducing a noise model for quantum detectors. It takes into account photon noise, thermal detector/preamplifier noise, and g-r and 1/f noise. In combination with a spectral band optimization with respect to the SNR an efficient tool for the radiometric analysis of IR sensor performance is presented. The comparison of model calculations in the 3–5 μm and 8–14-μm bands with experimental measurements yields excellent agreement.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Richter, “Infrared Simulation Model sensat-2,” Appl. Opt. 26, 2376 (1987).
    [CrossRef] [PubMed]
  2. R. Richter, “Infrared Simulation Model sensat-2A,” DFVLR-IB 552–07/88 (DFVLR, Wessling, F. R. Germany, 1988).
  3. E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984).
  4. W. L. Wolfe, G. J. Zissis, The Infrared Handbook (U.S. Office of Naval Research, Washington DC, 1985).
  5. R. J. Keyes, Ed., Optical and Infrared Detectors, Topics in Applied Physics, Vol. 19 (Springer-Verlag, Berlin, 1980).
    [CrossRef]
  6. F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer Code lowtran 6,” AFGL-TR-83-0187 (AFGL, Bedford, MA, 1983).
  7. A. Ben-Shalom, B. Barzilai, D. Cabib, A. D. Devir, S. G. Lipsom, U. P. Oppenheim, “Sky Radiance at Wavelengths Between 7 and 14 μm: Measurement, Calculation, and Comparison with lowtran-4 Predictions,” Appl. Opt. 19, 838 (1980).
    [CrossRef] [PubMed]
  8. R. G. Isaacs, W. C. Wang, R. D. Worsham, S. Goldenberg, “Multiple Scattering lowtran and fascode Models,” Appl. Opt. 26, 1272 (1987).
    [CrossRef] [PubMed]

1987 (2)

1980 (1)

Barzilai, B.

Ben-Shalom, A.

Cabib, D.

Crowe, D. G.

E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984).

Dereniak, E. L.

E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984).

Devir, A. D.

Goldenberg, S.

Isaacs, R. G.

Kneizys, F. X.

F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer Code lowtran 6,” AFGL-TR-83-0187 (AFGL, Bedford, MA, 1983).

Lipsom, S. G.

Oppenheim, U. P.

Richter, R.

R. Richter, “Infrared Simulation Model sensat-2,” Appl. Opt. 26, 2376 (1987).
[CrossRef] [PubMed]

R. Richter, “Infrared Simulation Model sensat-2A,” DFVLR-IB 552–07/88 (DFVLR, Wessling, F. R. Germany, 1988).

Wang, W. C.

Wolfe, W. L.

W. L. Wolfe, G. J. Zissis, The Infrared Handbook (U.S. Office of Naval Research, Washington DC, 1985).

Worsham, R. D.

Zissis, G. J.

W. L. Wolfe, G. J. Zissis, The Infrared Handbook (U.S. Office of Naval Research, Washington DC, 1985).

Appl. Opt. (3)

Other (5)

R. Richter, “Infrared Simulation Model sensat-2A,” DFVLR-IB 552–07/88 (DFVLR, Wessling, F. R. Germany, 1988).

E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984).

W. L. Wolfe, G. J. Zissis, The Infrared Handbook (U.S. Office of Naval Research, Washington DC, 1985).

R. J. Keyes, Ed., Optical and Infrared Detectors, Topics in Applied Physics, Vol. 19 (Springer-Verlag, Berlin, 1980).
[CrossRef]

F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer Code lowtran 6,” AFGL-TR-83-0187 (AFGL, Bedford, MA, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Flowchart to calculate the SNR. See Appendix.

Fig. 2
Fig. 2

SNR as a function of band center and bandwidth.

Fig. 3
Fig. 3

Isolines of SNR (98, 90, 80, …, 50% of maximum).

Fig. 4
Fig. 4

Schematics of experimental setup.

Fig. 5
Fig. 5

SNR calculated by sensat: 1, PRT-6 SW, blackbody temperature 992 K; 2, PRT-6 SW, blackbody temperature 1092 K; 3, PRT-6 LW, blackbody temperature 992 K; 4, PRT-6 LW, blackbody temperature 1092 K.

Fig. 6
Fig. 6

SNR difference between measurement and model calculation. Top: PRT-6 SW; bottom: PRT-6 LW: 1, blackbody temperature 992 K; 2, blackbody temperature 1092 K. Dashed lines, measurement error margins.

Tables (1)

Tables Icon

Table I Sensor Parameters for Cold Body Detection

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

SNR = E t / NEFD .
E t = 1 R 2 λ 1 λ 2 τ ( λ , R ) [ L T ( λ ) A T + L SRC ( λ ) A SRC ] d λ ,
w 1 = w c - Δ w / 2 , w 2 = w c + Δ w / 2 ,
w s = w start + b max / 2 ; w e = w end - b max / 2.
w c ( i ) = w s + ( i - 1 ) b disp             i = 1 , 2 , .

Metrics