Abstract

An optical pipelined architecture for a multifunctional binary arithmetic unit is proposed. The approach may eliminate geometrical constraints experienced in conventional implementations, thereby facilitating direct microminiaturization. Issues such as intensity restoration during data flow and fanout are also addressed.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. T. Rhodes, P. S. Guilfoyle, “Acoustooptic Algebraic Processing Architectures,” Proc. IEEE 72, 000 (1984).
    [CrossRef]
  2. J. W. Goodman, A. R. Dias, L. M. Woody, “Fully Parallel, High-Speed Incoherent Optical Method for Performing Discrete Fourier Transforms,” Opt. Lett. 2, 1 (1983).
    [CrossRef]
  3. A. W. Lohmann, B. Wirnitzer, “Triple Correlations,” Proc. IEEE 72, 000 (1984).
  4. R. A. Athale, W. C. Collins, P. D. Stilwell, “High Accuracy Matrix Multiplication with Outer Product Optical Processor,” Appl. Opt. 22, 368 (1983).
    [CrossRef] [PubMed]
  5. A. Huang, Y. Tsunoda, J. W. Goodman, S. Ishihara, “Optical Computation using Residue Arithmetic,” Appl. Opt. 18, 149 (1979).
    [CrossRef] [PubMed]
  6. Intel Data Catalog (Intel Corp., Santa Clara, CA, 1976).
  7. TTL Data Manual (Signetics, Sunnyvale, CA, 1984).
  8. A. K. Kamal, H. Singh, D. P. Agarwal, “A Generalized Pipeline Array,” IEEE Trans. on Comput. C-23, 533 (1974).
    [CrossRef]
  9. K. Hwang, F. A. Briggs, Computer Architecture and Parallel Processing (McGraw-Hill, New York, 1984), p. 182.
  10. M. M. Mano, Computer System Architecture (Prentice-Hall, Englewood Cliffs, NJ, 1976).
  11. P. W. Smith, W. J. Tomlinson, “Bistable Optical Devices Promise Subpicosecond Switching,” IEEE Spectrum 18, 26 (1981).
  12. M. Dagenais, W. F. Sharfin, “Bistable Diode Laser Amplifiers in High Performance Optical Communication and Optical Computing Systems,” in O-E Lase’88, SPIE, Los Angeles (Jan.1988).

1984 (2)

W. T. Rhodes, P. S. Guilfoyle, “Acoustooptic Algebraic Processing Architectures,” Proc. IEEE 72, 000 (1984).
[CrossRef]

A. W. Lohmann, B. Wirnitzer, “Triple Correlations,” Proc. IEEE 72, 000 (1984).

1983 (2)

1981 (1)

P. W. Smith, W. J. Tomlinson, “Bistable Optical Devices Promise Subpicosecond Switching,” IEEE Spectrum 18, 26 (1981).

1979 (1)

1974 (1)

A. K. Kamal, H. Singh, D. P. Agarwal, “A Generalized Pipeline Array,” IEEE Trans. on Comput. C-23, 533 (1974).
[CrossRef]

Agarwal, D. P.

A. K. Kamal, H. Singh, D. P. Agarwal, “A Generalized Pipeline Array,” IEEE Trans. on Comput. C-23, 533 (1974).
[CrossRef]

Athale, R. A.

Briggs, F. A.

K. Hwang, F. A. Briggs, Computer Architecture and Parallel Processing (McGraw-Hill, New York, 1984), p. 182.

Collins, W. C.

Dagenais, M.

M. Dagenais, W. F. Sharfin, “Bistable Diode Laser Amplifiers in High Performance Optical Communication and Optical Computing Systems,” in O-E Lase’88, SPIE, Los Angeles (Jan.1988).

Dias, A. R.

Goodman, J. W.

Guilfoyle, P. S.

W. T. Rhodes, P. S. Guilfoyle, “Acoustooptic Algebraic Processing Architectures,” Proc. IEEE 72, 000 (1984).
[CrossRef]

Huang, A.

Hwang, K.

K. Hwang, F. A. Briggs, Computer Architecture and Parallel Processing (McGraw-Hill, New York, 1984), p. 182.

Ishihara, S.

Kamal, A. K.

A. K. Kamal, H. Singh, D. P. Agarwal, “A Generalized Pipeline Array,” IEEE Trans. on Comput. C-23, 533 (1974).
[CrossRef]

Lohmann, A. W.

A. W. Lohmann, B. Wirnitzer, “Triple Correlations,” Proc. IEEE 72, 000 (1984).

Mano, M. M.

M. M. Mano, Computer System Architecture (Prentice-Hall, Englewood Cliffs, NJ, 1976).

Rhodes, W. T.

W. T. Rhodes, P. S. Guilfoyle, “Acoustooptic Algebraic Processing Architectures,” Proc. IEEE 72, 000 (1984).
[CrossRef]

Sharfin, W. F.

M. Dagenais, W. F. Sharfin, “Bistable Diode Laser Amplifiers in High Performance Optical Communication and Optical Computing Systems,” in O-E Lase’88, SPIE, Los Angeles (Jan.1988).

Singh, H.

A. K. Kamal, H. Singh, D. P. Agarwal, “A Generalized Pipeline Array,” IEEE Trans. on Comput. C-23, 533 (1974).
[CrossRef]

Smith, P. W.

P. W. Smith, W. J. Tomlinson, “Bistable Optical Devices Promise Subpicosecond Switching,” IEEE Spectrum 18, 26 (1981).

Stilwell, P. D.

Tomlinson, W. J.

P. W. Smith, W. J. Tomlinson, “Bistable Optical Devices Promise Subpicosecond Switching,” IEEE Spectrum 18, 26 (1981).

Tsunoda, Y.

Wirnitzer, B.

A. W. Lohmann, B. Wirnitzer, “Triple Correlations,” Proc. IEEE 72, 000 (1984).

Woody, L. M.

Appl. Opt. (2)

IEEE Spectrum (1)

P. W. Smith, W. J. Tomlinson, “Bistable Optical Devices Promise Subpicosecond Switching,” IEEE Spectrum 18, 26 (1981).

IEEE Trans. on Comput. (1)

A. K. Kamal, H. Singh, D. P. Agarwal, “A Generalized Pipeline Array,” IEEE Trans. on Comput. C-23, 533 (1974).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (2)

W. T. Rhodes, P. S. Guilfoyle, “Acoustooptic Algebraic Processing Architectures,” Proc. IEEE 72, 000 (1984).
[CrossRef]

A. W. Lohmann, B. Wirnitzer, “Triple Correlations,” Proc. IEEE 72, 000 (1984).

Other (5)

Intel Data Catalog (Intel Corp., Santa Clara, CA, 1976).

TTL Data Manual (Signetics, Sunnyvale, CA, 1984).

K. Hwang, F. A. Briggs, Computer Architecture and Parallel Processing (McGraw-Hill, New York, 1984), p. 182.

M. M. Mano, Computer System Architecture (Prentice-Hall, Englewood Cliffs, NJ, 1976).

M. Dagenais, W. F. Sharfin, “Bistable Diode Laser Amplifiers in High Performance Optical Communication and Optical Computing Systems,” in O-E Lase’88, SPIE, Los Angeles (Jan.1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Building block for arithmetic A and control C cells.

Fig. 2
Fig. 2

Pipelined architecture for arithmetic unit.

Fig. 3
Fig. 3

(a) Optical half-adder arrangement. M1, M2, M3 are mirrors; BS1, BS2, BS3 are beam splitters, OA is optical attenuator, and G is an optical gate. (b) Intensity enhancement scheme.

Fig. 4
Fig. 4

Optical realization of A ⊕ (BX) ⊕ Ci and (A + Ci) (BX).

Tables (2)

Tables Icon

Table I Function Table

Tables Icon

Table II Normal Output Field Strengths of ab and ab for Different Input Sets (a,b)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S = [ A ( B X ) C i ] F + A F ¯ ,
D = B ,
C 0 = ( B X ) ( A + C i ) + A C i .
F = X C i + P 0 X ¯ .

Metrics