Abstract

In inspection of materials, noncontact generation and detection of ultrasound using laser techniques has a growing interest. Before using these techniques in practical inspection tasks, some problems have to be overcome. To obtain maximum sensitivity for the detection of defects, control of beam direction and focusing of the generated ultrasound is of major importance. For this purpose a fiber-optic phase array technique was developed. Some optical techniques for ultrasound detection are compared, especially for detection at diffusely reflecting surfaces. A system based on the use of a confocal Fabry-Perot interferometer is best suited for this detection task. With the addition of a multimode fiber to this system as a flexible sensing lead, inspection can be carried out from a remote location and scanned detection is facilitated.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Miklowitz, The Theory of Elastic Waves and Waveguides (North-Holland, Amsterdam, 1980).
  2. W. M. Ewing, W. S. Jardetzky, W. Press, Elastic Waves in Layered Media (McGraw-Hill, New York, 1957).
  3. C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Quantitative Studies of Thermally Generated Elastic Waves in Laser-Irradiated Metals,” J. Appl. Phys. 51, 6210 (1980).
    [CrossRef]
  4. C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Laser Generation of Ultrasound in Metals Testing,” in Research Techniques in Non-Destructive Testing, Vol. 5, R. S. Sharpe, Ed. (Academic, New York, 1982).
  5. J. A. Vogel, A. J. A. Bruinsma, A. J. Berkhout, “Beamsteering of Laser Generated Ultrasound,” in Proceedings, Ultrasonics International ’87, London (July1987).
  6. J. P. Monchalin, “Optical Detection of Ultrasound,” IEEE Trans. Ultrason. Ferroelectrics Freq. Control UFFC-33, 485 (1986).
    [CrossRef]
  7. J. E. Bowers, R. L. Jungerman, B. T. Khuri-Yakub, G. S. Kino, “All Fiber-Optic Sensor for Surface Acoustic Wave Measurements,” IEEE/OSA J. Lightwave Technol. LT-1, 429 (1983).
    [CrossRef]
  8. R. L. Jungerman, B. T. Khuri-Yakub, G. S. Kino, “Optical Detection of Acoustic Displacements for the Characterisation of Surface Defects,” Mater. Eval. 42, 444 (1984).
  9. A. J. A. Bruinsma, “Noncontact Detection of Pulsed Acoustic Displacements for the Evaluation of Subsurface Defects,” Proc. Soc. Photo-Opt. Instrum. Eng. 798, 76 (1987).
  10. J. P. Monchalin, R. Heon, “Laser Ultrasonic Generation and Optical Detection with a Confocal Fabry-Perot Interferometer,” Mater. Eval. 44, 1231 (1986).
  11. J. P. Monchalin, “Detection at a Distance of Laser-Generated Ultrasound Using a Confocal Fabry-Perot Interferometer,” Can. J. Phys. 64, 1320 (1986).
    [CrossRef]
  12. S. Sternklar, S. Weiss, M. Segev, B. Fischer, “Mach-Zehnder Interferometer with Multimode Fibers Using the Double Phase-Conjugate Mirror,” Appl. Opt. 25, 4518 (1986).
    [CrossRef] [PubMed]
  13. M. Paul, B. Betz, W. Arnold, “Interferometric Detection of Ultrasound at Rough Surfaces Using Optical Phase Conjugation,” Appl. Phys. Lett. 50, 1569 (1987).
    [CrossRef]
  14. M. Hercher, “The Spherical Mirror Fabry-Perot Interferometer,” Appl. Opt. 7, 951 (1968).
    [CrossRef] [PubMed]

1987 (2)

A. J. A. Bruinsma, “Noncontact Detection of Pulsed Acoustic Displacements for the Evaluation of Subsurface Defects,” Proc. Soc. Photo-Opt. Instrum. Eng. 798, 76 (1987).

M. Paul, B. Betz, W. Arnold, “Interferometric Detection of Ultrasound at Rough Surfaces Using Optical Phase Conjugation,” Appl. Phys. Lett. 50, 1569 (1987).
[CrossRef]

1986 (4)

J. P. Monchalin, R. Heon, “Laser Ultrasonic Generation and Optical Detection with a Confocal Fabry-Perot Interferometer,” Mater. Eval. 44, 1231 (1986).

J. P. Monchalin, “Detection at a Distance of Laser-Generated Ultrasound Using a Confocal Fabry-Perot Interferometer,” Can. J. Phys. 64, 1320 (1986).
[CrossRef]

S. Sternklar, S. Weiss, M. Segev, B. Fischer, “Mach-Zehnder Interferometer with Multimode Fibers Using the Double Phase-Conjugate Mirror,” Appl. Opt. 25, 4518 (1986).
[CrossRef] [PubMed]

J. P. Monchalin, “Optical Detection of Ultrasound,” IEEE Trans. Ultrason. Ferroelectrics Freq. Control UFFC-33, 485 (1986).
[CrossRef]

1984 (1)

R. L. Jungerman, B. T. Khuri-Yakub, G. S. Kino, “Optical Detection of Acoustic Displacements for the Characterisation of Surface Defects,” Mater. Eval. 42, 444 (1984).

1983 (1)

J. E. Bowers, R. L. Jungerman, B. T. Khuri-Yakub, G. S. Kino, “All Fiber-Optic Sensor for Surface Acoustic Wave Measurements,” IEEE/OSA J. Lightwave Technol. LT-1, 429 (1983).
[CrossRef]

1980 (1)

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Quantitative Studies of Thermally Generated Elastic Waves in Laser-Irradiated Metals,” J. Appl. Phys. 51, 6210 (1980).
[CrossRef]

1968 (1)

Arnold, W.

M. Paul, B. Betz, W. Arnold, “Interferometric Detection of Ultrasound at Rough Surfaces Using Optical Phase Conjugation,” Appl. Phys. Lett. 50, 1569 (1987).
[CrossRef]

Berkhout, A. J.

J. A. Vogel, A. J. A. Bruinsma, A. J. Berkhout, “Beamsteering of Laser Generated Ultrasound,” in Proceedings, Ultrasonics International ’87, London (July1987).

Betz, B.

M. Paul, B. Betz, W. Arnold, “Interferometric Detection of Ultrasound at Rough Surfaces Using Optical Phase Conjugation,” Appl. Phys. Lett. 50, 1569 (1987).
[CrossRef]

Bowers, J. E.

J. E. Bowers, R. L. Jungerman, B. T. Khuri-Yakub, G. S. Kino, “All Fiber-Optic Sensor for Surface Acoustic Wave Measurements,” IEEE/OSA J. Lightwave Technol. LT-1, 429 (1983).
[CrossRef]

Bruinsma, A. J. A.

A. J. A. Bruinsma, “Noncontact Detection of Pulsed Acoustic Displacements for the Evaluation of Subsurface Defects,” Proc. Soc. Photo-Opt. Instrum. Eng. 798, 76 (1987).

J. A. Vogel, A. J. A. Bruinsma, A. J. Berkhout, “Beamsteering of Laser Generated Ultrasound,” in Proceedings, Ultrasonics International ’87, London (July1987).

Dewhurst, R. J.

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Quantitative Studies of Thermally Generated Elastic Waves in Laser-Irradiated Metals,” J. Appl. Phys. 51, 6210 (1980).
[CrossRef]

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Laser Generation of Ultrasound in Metals Testing,” in Research Techniques in Non-Destructive Testing, Vol. 5, R. S. Sharpe, Ed. (Academic, New York, 1982).

Ewing, W. M.

W. M. Ewing, W. S. Jardetzky, W. Press, Elastic Waves in Layered Media (McGraw-Hill, New York, 1957).

Fischer, B.

Heon, R.

J. P. Monchalin, R. Heon, “Laser Ultrasonic Generation and Optical Detection with a Confocal Fabry-Perot Interferometer,” Mater. Eval. 44, 1231 (1986).

Hercher, M.

Hutchins, D. A.

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Quantitative Studies of Thermally Generated Elastic Waves in Laser-Irradiated Metals,” J. Appl. Phys. 51, 6210 (1980).
[CrossRef]

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Laser Generation of Ultrasound in Metals Testing,” in Research Techniques in Non-Destructive Testing, Vol. 5, R. S. Sharpe, Ed. (Academic, New York, 1982).

Jardetzky, W. S.

W. M. Ewing, W. S. Jardetzky, W. Press, Elastic Waves in Layered Media (McGraw-Hill, New York, 1957).

Jungerman, R. L.

R. L. Jungerman, B. T. Khuri-Yakub, G. S. Kino, “Optical Detection of Acoustic Displacements for the Characterisation of Surface Defects,” Mater. Eval. 42, 444 (1984).

J. E. Bowers, R. L. Jungerman, B. T. Khuri-Yakub, G. S. Kino, “All Fiber-Optic Sensor for Surface Acoustic Wave Measurements,” IEEE/OSA J. Lightwave Technol. LT-1, 429 (1983).
[CrossRef]

Khuri-Yakub, B. T.

R. L. Jungerman, B. T. Khuri-Yakub, G. S. Kino, “Optical Detection of Acoustic Displacements for the Characterisation of Surface Defects,” Mater. Eval. 42, 444 (1984).

J. E. Bowers, R. L. Jungerman, B. T. Khuri-Yakub, G. S. Kino, “All Fiber-Optic Sensor for Surface Acoustic Wave Measurements,” IEEE/OSA J. Lightwave Technol. LT-1, 429 (1983).
[CrossRef]

Kino, G. S.

R. L. Jungerman, B. T. Khuri-Yakub, G. S. Kino, “Optical Detection of Acoustic Displacements for the Characterisation of Surface Defects,” Mater. Eval. 42, 444 (1984).

J. E. Bowers, R. L. Jungerman, B. T. Khuri-Yakub, G. S. Kino, “All Fiber-Optic Sensor for Surface Acoustic Wave Measurements,” IEEE/OSA J. Lightwave Technol. LT-1, 429 (1983).
[CrossRef]

Miklowitz, J.

J. Miklowitz, The Theory of Elastic Waves and Waveguides (North-Holland, Amsterdam, 1980).

Monchalin, J. P.

J. P. Monchalin, “Optical Detection of Ultrasound,” IEEE Trans. Ultrason. Ferroelectrics Freq. Control UFFC-33, 485 (1986).
[CrossRef]

J. P. Monchalin, R. Heon, “Laser Ultrasonic Generation and Optical Detection with a Confocal Fabry-Perot Interferometer,” Mater. Eval. 44, 1231 (1986).

J. P. Monchalin, “Detection at a Distance of Laser-Generated Ultrasound Using a Confocal Fabry-Perot Interferometer,” Can. J. Phys. 64, 1320 (1986).
[CrossRef]

Palmer, S. B.

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Quantitative Studies of Thermally Generated Elastic Waves in Laser-Irradiated Metals,” J. Appl. Phys. 51, 6210 (1980).
[CrossRef]

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Laser Generation of Ultrasound in Metals Testing,” in Research Techniques in Non-Destructive Testing, Vol. 5, R. S. Sharpe, Ed. (Academic, New York, 1982).

Paul, M.

M. Paul, B. Betz, W. Arnold, “Interferometric Detection of Ultrasound at Rough Surfaces Using Optical Phase Conjugation,” Appl. Phys. Lett. 50, 1569 (1987).
[CrossRef]

Press, W.

W. M. Ewing, W. S. Jardetzky, W. Press, Elastic Waves in Layered Media (McGraw-Hill, New York, 1957).

Scruby, C. B.

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Quantitative Studies of Thermally Generated Elastic Waves in Laser-Irradiated Metals,” J. Appl. Phys. 51, 6210 (1980).
[CrossRef]

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Laser Generation of Ultrasound in Metals Testing,” in Research Techniques in Non-Destructive Testing, Vol. 5, R. S. Sharpe, Ed. (Academic, New York, 1982).

Segev, M.

Sternklar, S.

Vogel, J. A.

J. A. Vogel, A. J. A. Bruinsma, A. J. Berkhout, “Beamsteering of Laser Generated Ultrasound,” in Proceedings, Ultrasonics International ’87, London (July1987).

Weiss, S.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. Paul, B. Betz, W. Arnold, “Interferometric Detection of Ultrasound at Rough Surfaces Using Optical Phase Conjugation,” Appl. Phys. Lett. 50, 1569 (1987).
[CrossRef]

Can. J. Phys. (1)

J. P. Monchalin, “Detection at a Distance of Laser-Generated Ultrasound Using a Confocal Fabry-Perot Interferometer,” Can. J. Phys. 64, 1320 (1986).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectrics Freq. Control (1)

J. P. Monchalin, “Optical Detection of Ultrasound,” IEEE Trans. Ultrason. Ferroelectrics Freq. Control UFFC-33, 485 (1986).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (1)

J. E. Bowers, R. L. Jungerman, B. T. Khuri-Yakub, G. S. Kino, “All Fiber-Optic Sensor for Surface Acoustic Wave Measurements,” IEEE/OSA J. Lightwave Technol. LT-1, 429 (1983).
[CrossRef]

J. Appl. Phys. (1)

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Quantitative Studies of Thermally Generated Elastic Waves in Laser-Irradiated Metals,” J. Appl. Phys. 51, 6210 (1980).
[CrossRef]

Mater. Eval. (2)

R. L. Jungerman, B. T. Khuri-Yakub, G. S. Kino, “Optical Detection of Acoustic Displacements for the Characterisation of Surface Defects,” Mater. Eval. 42, 444 (1984).

J. P. Monchalin, R. Heon, “Laser Ultrasonic Generation and Optical Detection with a Confocal Fabry-Perot Interferometer,” Mater. Eval. 44, 1231 (1986).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

A. J. A. Bruinsma, “Noncontact Detection of Pulsed Acoustic Displacements for the Evaluation of Subsurface Defects,” Proc. Soc. Photo-Opt. Instrum. Eng. 798, 76 (1987).

Other (4)

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Laser Generation of Ultrasound in Metals Testing,” in Research Techniques in Non-Destructive Testing, Vol. 5, R. S. Sharpe, Ed. (Academic, New York, 1982).

J. A. Vogel, A. J. A. Bruinsma, A. J. Berkhout, “Beamsteering of Laser Generated Ultrasound,” in Proceedings, Ultrasonics International ’87, London (July1987).

J. Miklowitz, The Theory of Elastic Waves and Waveguides (North-Holland, Amsterdam, 1980).

W. M. Ewing, W. S. Jardetzky, W. Press, Elastic Waves in Layered Media (McGraw-Hill, New York, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup for laser generation of ultasound.

Fig. 2
Fig. 2

Measured P-wave directivity pattern for a circular laser spot with a diameter of 0.16 mm.

Fig. 3
Fig. 3

Time signal of a laser-generated longitudinal pulse detected at 60° with a broadband piezoelectric transducer with a central frequency of 5 MHz.

Fig. 4
Fig. 4

Typical beam orientations for inspection of (a) welds and (b) rivet holes.

Fig. 5
Fig. 5

Setup for beam steering of laser-generated ultrasound using an optical fiber phased array.

Fig. 6
Fig. 6

Positions and dimensions of the individual array elements (illuminated spots).

Fig. 7
Fig. 7

Measured P-wave directivity patterns using an array with five elements and a delay of 2.5 × 10−7 s between the successive elements: (a) 1.5-mm element spacing; (b) 2.0-mm element spacing; (c) 2.5-mm element spacing; (d) 3.0-mm element spacing.

Fig. 8
Fig. 8

Diagram of a monomode fiber time delay interferometer for detection of pulsed ultrasonic surface vibration.

Fig. 9
Fig. 9

Schematic diagram of a setup for detection of ultrasound using the CFPI: PBS1 and PBS2, polarizing beam splitters; R1 and R2, quarterwave retarders; M1, mirror; O1, O2, and O3, collimating lenses; D1 and D2, photodetectors. The direction of polarization of the light from the linearly polarized He–Ne laser is adjusted in such a way that most of the light is reflected by PBS1 and only a small portion is used for the reference path.

Fig. 10
Fig. 10

Experimental setup of a modified CFPI system. In the sensing path a graded-index multimode optical fiber is added with a core diameter of 50 μm and a cladding diameter of 125 μm.

Fig. 11
Fig. 11

Experimental setup used for testing the optical detection systems. The CFPI detection system without optical fiber (Fig. 10) was positioned directly in front of the test object.

Tables (1)

Tables Icon

Table I SNR of Three Experimental Systems: CPFI, CFPI with Added Multimode Fiber, and FTDI

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( θ , ϕ ) X = I e ( θ ) × I a ( θ , ϕ ) .
I a ( θ , ϕ ) = ( 1 N sin N q sin q ) 2 ,

Metrics