Abstract

Optical generation and optical detection of thermal waves are used to determine the thermal properties of three different oxide coatings on stainless steel substrates at temperatures up to 1173 K. The thermal diffusivities α and thermal conductivities κ strongly depend on the method of preparation as well as on the environmental conditions during deposition. Our experimental values for α and κ are generally lower than handbook data for bulk specimens of the same materials.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York, 1980).
  2. A. Rosencwaig, A. Gersho, “Theory of the Photoacoustic Effect with Solids,” J. Appl. Phys. 47, 64 (1976).
    [Crossref]
  3. A. Rosencwaig, “Thermal-Wave Imaging in a Scanning Electron Microscope,” in International Advances in Nondestructive Testing, Vol. 11 (Gordon & Breach, London, 1985), pp. 105–174.
  4. S. O. Kanstad, P. E. Nordal, “Photoacoustic and Photothermal Techniques for Powder and Surface Spectroscopy,” Appl. Surf. Sci. 6, 372 (1980).
    [Crossref]
  5. A. C. Boccara, D. Fournier, J. Badoz, “Thermo-Optical Spectroscopy: Detection by the Mirage Effect,” Appl. Phys. Lett. 36, 130 (1980).
    [Crossref]
  6. K. R. Grice, L. J. Inglehart, L. D. Favro, P. K. Kuo, R. L. Thomas, “Thermal Wave Imaging of Closed Cracks in Opaque Solids,” J. Appl. Phys. 54, 6245 (1983).
    [Crossref]
  7. R. T. Swimm, “Photoacoustic Determination of Thin-Film Thermal Properties,” Appl. Phys. Lett. 42, 955 (1983).
    [Crossref]
  8. A. Lachaine, “Thermal Analysis by Photoacoustic Phase Measurements: Effect of Sample Thickness,” J. Appl. Phys. 57, 5075 (1985).
    [Crossref]
  9. H. P. R. Frederikse, A. Feldman, “Thermal Wave Inspection of Heat Resistant Ceramic Coatings,” Nondestructive Testing of High-Performance Ceramics, A. Vary, J. Snyder, Eds. (The American Ceramics Society, Westville, OH, 1987), pp. 177–182.
  10. Data Center, CINDAS, Purdue U., West Lafayette, IN; private communication (1988).
  11. W. J. Kennedy, J. E. Gentle, Statistical Computing (Marcel Dekker, New York, 1980), Chap. 10.3.
  12. Ceramic Source ’86 (The American Ceramic Society, Westville, OH, 1986), pp. 350–351.
  13. J. E. Parrott, A. D. Stuckes, Thermal Conductivity of Solids (Pion, London, 1975), p. 114.
  14. Ref. 13, Figs. 6.1 and 6.2.

1985 (1)

A. Lachaine, “Thermal Analysis by Photoacoustic Phase Measurements: Effect of Sample Thickness,” J. Appl. Phys. 57, 5075 (1985).
[Crossref]

1983 (2)

K. R. Grice, L. J. Inglehart, L. D. Favro, P. K. Kuo, R. L. Thomas, “Thermal Wave Imaging of Closed Cracks in Opaque Solids,” J. Appl. Phys. 54, 6245 (1983).
[Crossref]

R. T. Swimm, “Photoacoustic Determination of Thin-Film Thermal Properties,” Appl. Phys. Lett. 42, 955 (1983).
[Crossref]

1980 (2)

S. O. Kanstad, P. E. Nordal, “Photoacoustic and Photothermal Techniques for Powder and Surface Spectroscopy,” Appl. Surf. Sci. 6, 372 (1980).
[Crossref]

A. C. Boccara, D. Fournier, J. Badoz, “Thermo-Optical Spectroscopy: Detection by the Mirage Effect,” Appl. Phys. Lett. 36, 130 (1980).
[Crossref]

1976 (1)

A. Rosencwaig, A. Gersho, “Theory of the Photoacoustic Effect with Solids,” J. Appl. Phys. 47, 64 (1976).
[Crossref]

Badoz, J.

A. C. Boccara, D. Fournier, J. Badoz, “Thermo-Optical Spectroscopy: Detection by the Mirage Effect,” Appl. Phys. Lett. 36, 130 (1980).
[Crossref]

Boccara, A. C.

A. C. Boccara, D. Fournier, J. Badoz, “Thermo-Optical Spectroscopy: Detection by the Mirage Effect,” Appl. Phys. Lett. 36, 130 (1980).
[Crossref]

Favro, L. D.

K. R. Grice, L. J. Inglehart, L. D. Favro, P. K. Kuo, R. L. Thomas, “Thermal Wave Imaging of Closed Cracks in Opaque Solids,” J. Appl. Phys. 54, 6245 (1983).
[Crossref]

Feldman, A.

H. P. R. Frederikse, A. Feldman, “Thermal Wave Inspection of Heat Resistant Ceramic Coatings,” Nondestructive Testing of High-Performance Ceramics, A. Vary, J. Snyder, Eds. (The American Ceramics Society, Westville, OH, 1987), pp. 177–182.

Fournier, D.

A. C. Boccara, D. Fournier, J. Badoz, “Thermo-Optical Spectroscopy: Detection by the Mirage Effect,” Appl. Phys. Lett. 36, 130 (1980).
[Crossref]

Frederikse, H. P. R.

H. P. R. Frederikse, A. Feldman, “Thermal Wave Inspection of Heat Resistant Ceramic Coatings,” Nondestructive Testing of High-Performance Ceramics, A. Vary, J. Snyder, Eds. (The American Ceramics Society, Westville, OH, 1987), pp. 177–182.

Gentle, J. E.

W. J. Kennedy, J. E. Gentle, Statistical Computing (Marcel Dekker, New York, 1980), Chap. 10.3.

Gersho, A.

A. Rosencwaig, A. Gersho, “Theory of the Photoacoustic Effect with Solids,” J. Appl. Phys. 47, 64 (1976).
[Crossref]

Grice, K. R.

K. R. Grice, L. J. Inglehart, L. D. Favro, P. K. Kuo, R. L. Thomas, “Thermal Wave Imaging of Closed Cracks in Opaque Solids,” J. Appl. Phys. 54, 6245 (1983).
[Crossref]

Inglehart, L. J.

K. R. Grice, L. J. Inglehart, L. D. Favro, P. K. Kuo, R. L. Thomas, “Thermal Wave Imaging of Closed Cracks in Opaque Solids,” J. Appl. Phys. 54, 6245 (1983).
[Crossref]

Kanstad, S. O.

S. O. Kanstad, P. E. Nordal, “Photoacoustic and Photothermal Techniques for Powder and Surface Spectroscopy,” Appl. Surf. Sci. 6, 372 (1980).
[Crossref]

Kennedy, W. J.

W. J. Kennedy, J. E. Gentle, Statistical Computing (Marcel Dekker, New York, 1980), Chap. 10.3.

Kuo, P. K.

K. R. Grice, L. J. Inglehart, L. D. Favro, P. K. Kuo, R. L. Thomas, “Thermal Wave Imaging of Closed Cracks in Opaque Solids,” J. Appl. Phys. 54, 6245 (1983).
[Crossref]

Lachaine, A.

A. Lachaine, “Thermal Analysis by Photoacoustic Phase Measurements: Effect of Sample Thickness,” J. Appl. Phys. 57, 5075 (1985).
[Crossref]

Nordal, P. E.

S. O. Kanstad, P. E. Nordal, “Photoacoustic and Photothermal Techniques for Powder and Surface Spectroscopy,” Appl. Surf. Sci. 6, 372 (1980).
[Crossref]

Parrott, J. E.

J. E. Parrott, A. D. Stuckes, Thermal Conductivity of Solids (Pion, London, 1975), p. 114.

Rosencwaig, A.

A. Rosencwaig, A. Gersho, “Theory of the Photoacoustic Effect with Solids,” J. Appl. Phys. 47, 64 (1976).
[Crossref]

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York, 1980).

A. Rosencwaig, “Thermal-Wave Imaging in a Scanning Electron Microscope,” in International Advances in Nondestructive Testing, Vol. 11 (Gordon & Breach, London, 1985), pp. 105–174.

Stuckes, A. D.

J. E. Parrott, A. D. Stuckes, Thermal Conductivity of Solids (Pion, London, 1975), p. 114.

Swimm, R. T.

R. T. Swimm, “Photoacoustic Determination of Thin-Film Thermal Properties,” Appl. Phys. Lett. 42, 955 (1983).
[Crossref]

Thomas, R. L.

K. R. Grice, L. J. Inglehart, L. D. Favro, P. K. Kuo, R. L. Thomas, “Thermal Wave Imaging of Closed Cracks in Opaque Solids,” J. Appl. Phys. 54, 6245 (1983).
[Crossref]

Appl. Phys. Lett. (2)

R. T. Swimm, “Photoacoustic Determination of Thin-Film Thermal Properties,” Appl. Phys. Lett. 42, 955 (1983).
[Crossref]

A. C. Boccara, D. Fournier, J. Badoz, “Thermo-Optical Spectroscopy: Detection by the Mirage Effect,” Appl. Phys. Lett. 36, 130 (1980).
[Crossref]

Appl. Surf. Sci. (1)

S. O. Kanstad, P. E. Nordal, “Photoacoustic and Photothermal Techniques for Powder and Surface Spectroscopy,” Appl. Surf. Sci. 6, 372 (1980).
[Crossref]

J. Appl. Phys. (3)

A. Rosencwaig, A. Gersho, “Theory of the Photoacoustic Effect with Solids,” J. Appl. Phys. 47, 64 (1976).
[Crossref]

K. R. Grice, L. J. Inglehart, L. D. Favro, P. K. Kuo, R. L. Thomas, “Thermal Wave Imaging of Closed Cracks in Opaque Solids,” J. Appl. Phys. 54, 6245 (1983).
[Crossref]

A. Lachaine, “Thermal Analysis by Photoacoustic Phase Measurements: Effect of Sample Thickness,” J. Appl. Phys. 57, 5075 (1985).
[Crossref]

Other (8)

H. P. R. Frederikse, A. Feldman, “Thermal Wave Inspection of Heat Resistant Ceramic Coatings,” Nondestructive Testing of High-Performance Ceramics, A. Vary, J. Snyder, Eds. (The American Ceramics Society, Westville, OH, 1987), pp. 177–182.

Data Center, CINDAS, Purdue U., West Lafayette, IN; private communication (1988).

W. J. Kennedy, J. E. Gentle, Statistical Computing (Marcel Dekker, New York, 1980), Chap. 10.3.

Ceramic Source ’86 (The American Ceramic Society, Westville, OH, 1986), pp. 350–351.

J. E. Parrott, A. D. Stuckes, Thermal Conductivity of Solids (Pion, London, 1975), p. 114.

Ref. 13, Figs. 6.1 and 6.2.

A. Rosencwaig, “Thermal-Wave Imaging in a Scanning Electron Microscope,” in International Advances in Nondestructive Testing, Vol. 11 (Gordon & Breach, London, 1985), pp. 105–174.

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York, 1980).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Wavelength dependence of blackbody radiation for temperatures between 200 and 6000 K [from Handbook of Optics, W. G. Driscoll and W. Vaughan, Eds. (McGraw-Hill, New York, 1978), pp. 1–15]. Superimposed are the detectivities D* of a Ge and of a liquid nitrogen-cooled InSb photodetector.

Fig. 2
Fig. 2

Experimental arrangement for photothermal radiometry.

Fig. 3
Fig. 3

Relative phase vs square root of the modulation frequency for sample CS2 at three temperatures: ○, 295 K, ◇, 961 K; △, 1173 K.

Fig. 4
Fig. 4

(a) Thermal diffusivity α and (b) thermal conductivity κ for three oxide coatings as a function of temperature. The experimental data points for both α and κ have been fit by an empirical expression of the form A/T + BT + C; +, CS3; ×, ZS3; *, AS3.

Tables (1)

Tables Icon

Table I Thermal Diffusivity α and Thermal Conductivity κ of Three Different Oxide Coatings Between 295 and 1173 Ka

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = tan - 1 { ( 2 R sin 2 x ) / [ exp ( 2 x ) - R 2 · exp ( - 2 x ) ] } + Δ ϕ 0 ,
x = L / μ T = F f ,
F = L ( π / α ) ,
R = ( 1 - b ) / ( 1 + b ) ,
b = e s / e c ,
e = ( κ ρ C ) ,
μ T = ( α / π f ) ,

Metrics