Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Fortin, M. Gravel, R. Tremblay, “Helical TEA-CO2 Lasers,” Can. J. Phys. 49, 1783 (1971).
    [CrossRef]
  2. D. T. Rampton, O. P. Gandhi, “Performance Characteristics of a Helical TEA CO2 Laser,” Appl. Phys. Lett. 21, 457 (1972).
    [CrossRef]
  3. K. H. Krahn, K. H. Finken, “Spectral Output of a Helical TEA CO2 Laser and its Dependence on Charging Voltage,” Appl. Opt. 16, 1137 (1977).
    [CrossRef] [PubMed]
  4. A. K. Nath, U. K. Chatterjee, “Effect of Pressure on the Spectral Distribution of a Transversely Excited Atmosphere CO2 Laser Oscillator,” J. Appl. Phys. 51, 5250 (1980).
    [CrossRef]
  5. G. Girad, M. Huguet, M. Michon, “High Power Double Discharge TEA Laser Medium Diagnostic,” IEEE J. Quantum Electron. QE-9, 426 (1973).
    [CrossRef]
  6. S. Singer, “Observations of Anomalous Gain Coefficients in TEA Double Discharge CO2 Lasers,” IEEE J. Quantum Electron. QE-10, 829 (1974).
    [CrossRef]

1980 (1)

A. K. Nath, U. K. Chatterjee, “Effect of Pressure on the Spectral Distribution of a Transversely Excited Atmosphere CO2 Laser Oscillator,” J. Appl. Phys. 51, 5250 (1980).
[CrossRef]

1977 (1)

1974 (1)

S. Singer, “Observations of Anomalous Gain Coefficients in TEA Double Discharge CO2 Lasers,” IEEE J. Quantum Electron. QE-10, 829 (1974).
[CrossRef]

1973 (1)

G. Girad, M. Huguet, M. Michon, “High Power Double Discharge TEA Laser Medium Diagnostic,” IEEE J. Quantum Electron. QE-9, 426 (1973).
[CrossRef]

1972 (1)

D. T. Rampton, O. P. Gandhi, “Performance Characteristics of a Helical TEA CO2 Laser,” Appl. Phys. Lett. 21, 457 (1972).
[CrossRef]

1971 (1)

R. Fortin, M. Gravel, R. Tremblay, “Helical TEA-CO2 Lasers,” Can. J. Phys. 49, 1783 (1971).
[CrossRef]

Chatterjee, U. K.

A. K. Nath, U. K. Chatterjee, “Effect of Pressure on the Spectral Distribution of a Transversely Excited Atmosphere CO2 Laser Oscillator,” J. Appl. Phys. 51, 5250 (1980).
[CrossRef]

Finken, K. H.

Fortin, R.

R. Fortin, M. Gravel, R. Tremblay, “Helical TEA-CO2 Lasers,” Can. J. Phys. 49, 1783 (1971).
[CrossRef]

Gandhi, O. P.

D. T. Rampton, O. P. Gandhi, “Performance Characteristics of a Helical TEA CO2 Laser,” Appl. Phys. Lett. 21, 457 (1972).
[CrossRef]

Girad, G.

G. Girad, M. Huguet, M. Michon, “High Power Double Discharge TEA Laser Medium Diagnostic,” IEEE J. Quantum Electron. QE-9, 426 (1973).
[CrossRef]

Gravel, M.

R. Fortin, M. Gravel, R. Tremblay, “Helical TEA-CO2 Lasers,” Can. J. Phys. 49, 1783 (1971).
[CrossRef]

Huguet, M.

G. Girad, M. Huguet, M. Michon, “High Power Double Discharge TEA Laser Medium Diagnostic,” IEEE J. Quantum Electron. QE-9, 426 (1973).
[CrossRef]

Krahn, K. H.

Michon, M.

G. Girad, M. Huguet, M. Michon, “High Power Double Discharge TEA Laser Medium Diagnostic,” IEEE J. Quantum Electron. QE-9, 426 (1973).
[CrossRef]

Nath, A. K.

A. K. Nath, U. K. Chatterjee, “Effect of Pressure on the Spectral Distribution of a Transversely Excited Atmosphere CO2 Laser Oscillator,” J. Appl. Phys. 51, 5250 (1980).
[CrossRef]

Rampton, D. T.

D. T. Rampton, O. P. Gandhi, “Performance Characteristics of a Helical TEA CO2 Laser,” Appl. Phys. Lett. 21, 457 (1972).
[CrossRef]

Singer, S.

S. Singer, “Observations of Anomalous Gain Coefficients in TEA Double Discharge CO2 Lasers,” IEEE J. Quantum Electron. QE-10, 829 (1974).
[CrossRef]

Tremblay, R.

R. Fortin, M. Gravel, R. Tremblay, “Helical TEA-CO2 Lasers,” Can. J. Phys. 49, 1783 (1971).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. T. Rampton, O. P. Gandhi, “Performance Characteristics of a Helical TEA CO2 Laser,” Appl. Phys. Lett. 21, 457 (1972).
[CrossRef]

Can. J. Phys. (1)

R. Fortin, M. Gravel, R. Tremblay, “Helical TEA-CO2 Lasers,” Can. J. Phys. 49, 1783 (1971).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. Girad, M. Huguet, M. Michon, “High Power Double Discharge TEA Laser Medium Diagnostic,” IEEE J. Quantum Electron. QE-9, 426 (1973).
[CrossRef]

S. Singer, “Observations of Anomalous Gain Coefficients in TEA Double Discharge CO2 Lasers,” IEEE J. Quantum Electron. QE-10, 829 (1974).
[CrossRef]

J. Appl. Phys. (1)

A. K. Nath, U. K. Chatterjee, “Effect of Pressure on the Spectral Distribution of a Transversely Excited Atmosphere CO2 Laser Oscillator,” J. Appl. Phys. 51, 5250 (1980).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Dependence of spectral intensity distribution on the position of the intracavity aperture. The solid line represents the fractional energy at the 10P(20) line, and the dotted line shows the ratio of energies at 10P(18) and 10P(16).

Fig. 2
Fig. 2

Dependence of gain on gas temperature. The solid line represents the gain on the 10P(18) line and the dotted line that on 10P(16). The gain values have been normalized with respect to the gain on the 10P(20) line.

Metrics