Abstract

The liquid crystal adaptive lens (LCAL) is an electrooptic device that emulates a variable focal length lens. The LCAL focuses light by creating a parabolic refractive-index profile across the aperture of a liquid crystal cell. The focal length is electronically controlled by applying appropriate voltages to the array of independent electrodes, thus grading the refractive index of the liquid crystal material across the aperture. Beam translation perpendicular to the optical beam path is described theoretically and demonstrated. This capability coupled with the LCAL’s programmable focal length allows 3-D beam control. Meshing, the smoothing of the refractive index between adjacent electrodes, is a critical parameter in achieving near diffraction-limited optical performance. Using two planar electrodes and a ground plane immersed in an isotropic dielectric as a model, a steady-state dc theoretical computer simulation is compared with experiment. Improvements in the liquid crystal cell design demonstrate improved performance over previous LCALs. A larger number of electrodes creates an image without spatial aliasing within the aperture.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription