Abstract

An optical system which produces 3-D images exhibiting continuous parallax with no flipping or cardboarding is described. Both integral and lenticular images can be recorded on photographic film without recourse to a specialized environment. Standard photographic processing and enlarging techniques are used to obtain hard copy. Measurements on commercially available retrodirective screens and a new retroscreen arrangement show that the new screen developed gives significant advantages. A retrodirective and a transmission version of the system have been constructed.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Lippmann, “Eppaives reversibles donnant la sensation Dureluf,” J. Phys. Paris 821, (1908).
  2. F. E. Ives, “Parallax Stereogram,” U.S. Patent725,567 (1902).
  3. C. W. Kanolt, “Parallax Panoramagrams,” U.S. Patent1,260,682 (1951).
  4. H. E. Ives, “Optical Properties of a Lippmann Lenticulated Sheet,” J. Opt. Soc. Am. 21, 171 (1931).
    [CrossRef]
  5. C. B. Burckhardt, “Optimum Parameters and Resolution Limitation of Integral Photography,” J. Opt. Soc. Am. 21, 171 (1931).
  6. T. Okoshi, Three Dimensional Imaging Techniques (Academic, New York, 1976).
  7. R. L. de Montebello, “Wide-Angle Integral Holography—The Intergram System,” Proc. Soc. Photo-Opt. Instrum. Eng. 120 (1977).
  8. H. Huguchi, J. Hamasaki, “Real-Time Transmission of 3-D Images Formed by Parallax Panoramagrams,” Appl. Opt. 17, 3895 (1978).
    [CrossRef]
  9. H. E. Ives, “Parallax Panoramagrams Made with a Large Diameter Lens,” J. Opt. Soc. Am. 20, 597 (1930).
    [CrossRef]
  10. W. H. Venable, N. L. Johnson, “Unified Coordinate System for Retroreflectance Measurements,” Appl. Opt. 19, 1236 (1980).
    [CrossRef] [PubMed]
  11. W. H. Venable, H. F. Stephenson, H. Terstiege, “Factors Affecting the Metrology of Retroreflecting Materials,” Appl. Opt. 19, 1242 (1980).
    [CrossRef] [PubMed]
  12. K. L. Eckerle, J. J. Hsia, V. R. Weidner, W. H. Venable, “NBS Reference Retroreflectometer,” Appl. Opt. 19, 1253 (1980).
    [CrossRef] [PubMed]
  13. A. Cox, Photographic Optics.

1980 (3)

1978 (1)

1977 (1)

R. L. de Montebello, “Wide-Angle Integral Holography—The Intergram System,” Proc. Soc. Photo-Opt. Instrum. Eng. 120 (1977).

1931 (2)

1930 (1)

1908 (1)

M. G. Lippmann, “Eppaives reversibles donnant la sensation Dureluf,” J. Phys. Paris 821, (1908).

Burckhardt, C. B.

Cox, A.

A. Cox, Photographic Optics.

de Montebello, R. L.

R. L. de Montebello, “Wide-Angle Integral Holography—The Intergram System,” Proc. Soc. Photo-Opt. Instrum. Eng. 120 (1977).

Eckerle, K. L.

Hamasaki, J.

Hsia, J. J.

Huguchi, H.

Ives, F. E.

F. E. Ives, “Parallax Stereogram,” U.S. Patent725,567 (1902).

Ives, H. E.

Johnson, N. L.

Kanolt, C. W.

C. W. Kanolt, “Parallax Panoramagrams,” U.S. Patent1,260,682 (1951).

Lippmann, M. G.

M. G. Lippmann, “Eppaives reversibles donnant la sensation Dureluf,” J. Phys. Paris 821, (1908).

Okoshi, T.

T. Okoshi, Three Dimensional Imaging Techniques (Academic, New York, 1976).

Stephenson, H. F.

Terstiege, H.

Venable, W. H.

Weidner, V. R.

Appl. Opt. (4)

J. Opt. Soc. Am. (3)

J. Phys. Paris (1)

M. G. Lippmann, “Eppaives reversibles donnant la sensation Dureluf,” J. Phys. Paris 821, (1908).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

R. L. de Montebello, “Wide-Angle Integral Holography—The Intergram System,” Proc. Soc. Photo-Opt. Instrum. Eng. 120 (1977).

Other (4)

A. Cox, Photographic Optics.

F. E. Ives, “Parallax Stereogram,” U.S. Patent725,567 (1902).

C. W. Kanolt, “Parallax Panoramagrams,” U.S. Patent1,260,682 (1951).

T. Okoshi, Three Dimensional Imaging Techniques (Academic, New York, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

(a) Camera construction shown diagrammatically; (b) retrodirective screen (H.C.C.) with detail of corner cube.

Fig. 2
Fig. 2

(a) Image produced by retrodirective screen; (b) image produced by autocollimating transmission screen.

Fig. 3
Fig. 3

Inversion of spacial sense with lenticular or integral screens.

Fig. 4
Fig. 4

Images produce ed by prototype camera.

Fig. 5
Fig. 5

Optical system for directivity measurement.

Fig. 6
Fig. 6

Energy distribution measurement (Okoshi).

Fig. 7
Fig. 7

Method adopted for directivity measurement.

Fig. 8
Fig. 8

Improved images produced with a 200-mm Fresnel lens.

Fig. 9
Fig. 9

Examples using 100- and 150-mm commercial photographic lenses.

Fig. 10
Fig. 10

Limit of resolution determined by the microoptical structure of the retrodirective screen.

Fig. 11
Fig. 11

Microphotograph of high-gain beaded screen reflector.

Fig. 12
Fig. 12

Microphotograph of triple mirror reflector showing redundant areas.

Fig. 13
Fig. 13

Cat’s-eye screen.

Fig. 14
Fig. 14

Transmission version of camera.

Fig. 15
Fig. 15

Autocollimating element of transmission screen.

Fig. 16
Fig. 16

Detail of transmission screen used on the camera shown in Fig. 14.

Fig. 17
Fig. 17

Images produced by prototype transmission system.

Fig. 18
Fig. 18

(a) Diagram showing parameters determining the magnitude of flipping6; (b) optical arrangement which cancels flipping.

Tables (1)

Tables Icon

Table I Results of Directivity Measurements on Various Retrodirective Screens

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S 1 = r .5 - r .25 x .5 - x .25 ,
S 2 = r .5 - r .25 x .5 - x .25 ,
S 1 - S .
F = d 2 b 2 / ( a 2 + b 2 ) ,

Metrics