Abstract

A fast temperature measurement technique is described which is suitable for use in dynamic reacting gases, particularly in situations which involve hydrocarbon–air combustion. Temperature is determined from the relative intensity of a pair of fully resolved absorption lines probed with a rapid-tuning single-frequency laser. Demonstration of the technique using 300-μs scans across the R1(7) and R1(11) lines in the (0,0) band of the A2+X2Π system of OH present in the postflame gases above a CH4–air flat-flame burner is reported. Fluorescence monitoring of the absorption spectra was used to provide improved spatial resolution. Temperatures inferred from simultaneous absorption and fluorescence measurements showed good agreement with radiation-corrected thermocouple scans.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Hanson, P. K. Falcone, “Temperature Measurement Technique for High-Temperature Gases Using a Tunable Diode Laser,” Appl. Opt. 17, 2477 (1978).
    [CrossRef] [PubMed]
  2. A. Y. Chang, E. C. Rea, R. K. Hanson, “Temperature Measurements in Shock Tubes Using a Laser-Based Absorption Technique,” Appl. Opt. 26, 885 (1987).
    [CrossRef] [PubMed]
  3. K. L. Luck, W. Thielen, “Measurements of Temperatures and OH-Concentrations in a Lean Methane-Air Flame Using High-Resolution Laser-Absorption Spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 20, 71 (1978).
    [CrossRef]
  4. E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock Tube Study of Pressure Broadening of the A2∑+ ← X2Π (0,0) Band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117 (1987).
    [CrossRef]
  5. M. Abramowitz, I. A. Stegun, Eds., Handbook of Mathematical Function (Dover, New York, 1972).
  6. J. Humlicek, “An Efficient Method for Evaluation of the Complex Probability Function: the Voigt Function and Its Derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309 (1979).
    [CrossRef]
  7. P. E. Rouse, R. Engleman, “Oscillator Strengths from Line Absorption In a High-Temperature Furnace-I. The (0,0) and (1,0) Bands of the A2∑+—X2Πi Transition in OH and OD,” J. Quant. Spectrosc. Radiat. Transfer 13, 1503 (1973).
    [CrossRef]
  8. C. C. Wang, D. K. Killinger, C. Huang, “Rotational Dependence in the Linewidth of the Ultraviolet Transitions of OH,” Phys. Rev. A 22, 188 (1980).
    [CrossRef]
  9. C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1977).
  10. G. H. Dieke, H. M. Crosswhite, “The Ultraviolet Bands of OH: Fundamental Data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).
    [CrossRef]
  11. A. Goldman, J. R. Gillis, “Spectral Line Parameters for the A2∑—X2Π(0,0) Band of OH for Atmospheric and High Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 25, 111 (1981).
    [CrossRef]
  12. J. W. Daily, “Saturation of Fluorescence in Flames with a Gaussian Laser Beam,” Appl. Opt. 17, 225 (1978).
    [CrossRef] [PubMed]
  13. D. H. Campbell, “Collisional Effects on Laser-Induced Fluorescence Measurements of Hydroxide Concentrations in a Combustion Environment. 1. Effects for v′ = 0 Excitation,” Appl. Opt. 23, 689 (1984).
    [CrossRef] [PubMed]
  14. R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-Level-Dependent Quenching of A2∑+ OH and OD,” J. Chem. Phys. 82, 4022 (1985).
    [CrossRef]
  15. D. R. Crosley, G. P. Smith, “Rotational Energy Transfer and LIF Temperature Measurements,” Combust. Flame 44, 27 (1982).
    [CrossRef]
  16. E. C. Rea, R. K. Hanson, “Rapid Extended Range Tuning of Single-Mode Ring Dye Lasers,” Appl. Opt. 22, 518 (1983).
    [CrossRef] [PubMed]
  17. E. C. Rea, S. Salimian, R. K. Hanson, “Rapid-Tuning Frequency-Doubled Ring Dye Laser for High Resolution Absorption Spectroscopy in Shock-Heated Gases,” Appl. Opt. 23, 1691 (1984).
    [CrossRef] [PubMed]

1987

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock Tube Study of Pressure Broadening of the A2∑+ ← X2Π (0,0) Band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117 (1987).
[CrossRef]

A. Y. Chang, E. C. Rea, R. K. Hanson, “Temperature Measurements in Shock Tubes Using a Laser-Based Absorption Technique,” Appl. Opt. 26, 885 (1987).
[CrossRef] [PubMed]

1985

R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-Level-Dependent Quenching of A2∑+ OH and OD,” J. Chem. Phys. 82, 4022 (1985).
[CrossRef]

1984

1983

1982

D. R. Crosley, G. P. Smith, “Rotational Energy Transfer and LIF Temperature Measurements,” Combust. Flame 44, 27 (1982).
[CrossRef]

1981

A. Goldman, J. R. Gillis, “Spectral Line Parameters for the A2∑—X2Π(0,0) Band of OH for Atmospheric and High Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 25, 111 (1981).
[CrossRef]

1980

C. C. Wang, D. K. Killinger, C. Huang, “Rotational Dependence in the Linewidth of the Ultraviolet Transitions of OH,” Phys. Rev. A 22, 188 (1980).
[CrossRef]

1979

J. Humlicek, “An Efficient Method for Evaluation of the Complex Probability Function: the Voigt Function and Its Derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309 (1979).
[CrossRef]

1978

K. L. Luck, W. Thielen, “Measurements of Temperatures and OH-Concentrations in a Lean Methane-Air Flame Using High-Resolution Laser-Absorption Spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 20, 71 (1978).
[CrossRef]

J. W. Daily, “Saturation of Fluorescence in Flames with a Gaussian Laser Beam,” Appl. Opt. 17, 225 (1978).
[CrossRef] [PubMed]

R. K. Hanson, P. K. Falcone, “Temperature Measurement Technique for High-Temperature Gases Using a Tunable Diode Laser,” Appl. Opt. 17, 2477 (1978).
[CrossRef] [PubMed]

1973

P. E. Rouse, R. Engleman, “Oscillator Strengths from Line Absorption In a High-Temperature Furnace-I. The (0,0) and (1,0) Bands of the A2∑+—X2Πi Transition in OH and OD,” J. Quant. Spectrosc. Radiat. Transfer 13, 1503 (1973).
[CrossRef]

1962

G. H. Dieke, H. M. Crosswhite, “The Ultraviolet Bands of OH: Fundamental Data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).
[CrossRef]

Campbell, D. H.

Chang, A. Y.

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock Tube Study of Pressure Broadening of the A2∑+ ← X2Π (0,0) Band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117 (1987).
[CrossRef]

A. Y. Chang, E. C. Rea, R. K. Hanson, “Temperature Measurements in Shock Tubes Using a Laser-Based Absorption Technique,” Appl. Opt. 26, 885 (1987).
[CrossRef] [PubMed]

Copeland, R. A.

R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-Level-Dependent Quenching of A2∑+ OH and OD,” J. Chem. Phys. 82, 4022 (1985).
[CrossRef]

Crosley, D. R.

R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-Level-Dependent Quenching of A2∑+ OH and OD,” J. Chem. Phys. 82, 4022 (1985).
[CrossRef]

D. R. Crosley, G. P. Smith, “Rotational Energy Transfer and LIF Temperature Measurements,” Combust. Flame 44, 27 (1982).
[CrossRef]

Crosswhite, H. M.

G. H. Dieke, H. M. Crosswhite, “The Ultraviolet Bands of OH: Fundamental Data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).
[CrossRef]

Daily, J. W.

Dieke, G. H.

G. H. Dieke, H. M. Crosswhite, “The Ultraviolet Bands of OH: Fundamental Data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).
[CrossRef]

Dyer, M. J.

R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-Level-Dependent Quenching of A2∑+ OH and OD,” J. Chem. Phys. 82, 4022 (1985).
[CrossRef]

Engleman, R.

P. E. Rouse, R. Engleman, “Oscillator Strengths from Line Absorption In a High-Temperature Furnace-I. The (0,0) and (1,0) Bands of the A2∑+—X2Πi Transition in OH and OD,” J. Quant. Spectrosc. Radiat. Transfer 13, 1503 (1973).
[CrossRef]

Falcone, P. K.

Gillis, J. R.

A. Goldman, J. R. Gillis, “Spectral Line Parameters for the A2∑—X2Π(0,0) Band of OH for Atmospheric and High Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 25, 111 (1981).
[CrossRef]

Goldman, A.

A. Goldman, J. R. Gillis, “Spectral Line Parameters for the A2∑—X2Π(0,0) Band of OH for Atmospheric and High Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 25, 111 (1981).
[CrossRef]

Hanson, R. K.

Huang, C.

C. C. Wang, D. K. Killinger, C. Huang, “Rotational Dependence in the Linewidth of the Ultraviolet Transitions of OH,” Phys. Rev. A 22, 188 (1980).
[CrossRef]

Humlicek, J.

J. Humlicek, “An Efficient Method for Evaluation of the Complex Probability Function: the Voigt Function and Its Derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309 (1979).
[CrossRef]

Killinger, D. K.

C. C. Wang, D. K. Killinger, C. Huang, “Rotational Dependence in the Linewidth of the Ultraviolet Transitions of OH,” Phys. Rev. A 22, 188 (1980).
[CrossRef]

Luck, K. L.

K. L. Luck, W. Thielen, “Measurements of Temperatures and OH-Concentrations in a Lean Methane-Air Flame Using High-Resolution Laser-Absorption Spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 20, 71 (1978).
[CrossRef]

Rea, E. C.

Rouse, P. E.

P. E. Rouse, R. Engleman, “Oscillator Strengths from Line Absorption In a High-Temperature Furnace-I. The (0,0) and (1,0) Bands of the A2∑+—X2Πi Transition in OH and OD,” J. Quant. Spectrosc. Radiat. Transfer 13, 1503 (1973).
[CrossRef]

Salimian, S.

Schawlow, A. L.

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1977).

Smith, G. P.

D. R. Crosley, G. P. Smith, “Rotational Energy Transfer and LIF Temperature Measurements,” Combust. Flame 44, 27 (1982).
[CrossRef]

Thielen, W.

K. L. Luck, W. Thielen, “Measurements of Temperatures and OH-Concentrations in a Lean Methane-Air Flame Using High-Resolution Laser-Absorption Spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 20, 71 (1978).
[CrossRef]

Townes, C. H.

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1977).

Wang, C. C.

C. C. Wang, D. K. Killinger, C. Huang, “Rotational Dependence in the Linewidth of the Ultraviolet Transitions of OH,” Phys. Rev. A 22, 188 (1980).
[CrossRef]

Appl. Opt.

Combust. Flame

D. R. Crosley, G. P. Smith, “Rotational Energy Transfer and LIF Temperature Measurements,” Combust. Flame 44, 27 (1982).
[CrossRef]

J. Chem. Phys.

R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-Level-Dependent Quenching of A2∑+ OH and OD,” J. Chem. Phys. 82, 4022 (1985).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

J. Humlicek, “An Efficient Method for Evaluation of the Complex Probability Function: the Voigt Function and Its Derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309 (1979).
[CrossRef]

P. E. Rouse, R. Engleman, “Oscillator Strengths from Line Absorption In a High-Temperature Furnace-I. The (0,0) and (1,0) Bands of the A2∑+—X2Πi Transition in OH and OD,” J. Quant. Spectrosc. Radiat. Transfer 13, 1503 (1973).
[CrossRef]

K. L. Luck, W. Thielen, “Measurements of Temperatures and OH-Concentrations in a Lean Methane-Air Flame Using High-Resolution Laser-Absorption Spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 20, 71 (1978).
[CrossRef]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock Tube Study of Pressure Broadening of the A2∑+ ← X2Π (0,0) Band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117 (1987).
[CrossRef]

G. H. Dieke, H. M. Crosswhite, “The Ultraviolet Bands of OH: Fundamental Data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).
[CrossRef]

A. Goldman, J. R. Gillis, “Spectral Line Parameters for the A2∑—X2Π(0,0) Band of OH for Atmospheric and High Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 25, 111 (1981).
[CrossRef]

Phys. Rev. A

C. C. Wang, D. K. Killinger, C. Huang, “Rotational Dependence in the Linewidth of the Ultraviolet Transitions of OH,” Phys. Rev. A 22, 188 (1980).
[CrossRef]

Other

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1977).

M. Abramowitz, I. A. Stegun, Eds., Handbook of Mathematical Function (Dover, New York, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Temperature dependence of line-center absorption coefficients of the R1(7) and R11(11) lines in the A2+X2Π(v″ = 0, v′ = 0) band of the OH radical.

Fig. 2
Fig. 2

Temperature dependence of the 7/11 line-pair peak ratio, Rpeak, demonstrating the insensitivity of the ratio to the assumed broadening parameter. Rpeak has been calculated using the best-fit value of the Voigt a parameter and is shown bracketed by calculations which assumed variations in a of ±50% from the best-fit measured values. The functional form used for the Voigt parameter was a = k(P/T), where k = 325 K/atm.

Fig. 3
Fig. 3

Schematic of the experimental apparatus used for simultaneous absorption/fluorescence measurements: L1, L2, quartz lenses; F, visible-light blocking filters; D1, D2, silicon photodiodes; D3, photomultiplier tube. (Aperture stops used in the fluorescence imaging system are not shown.)

Fig. 4
Fig. 4

Typical raw data set. The traces shown were recorded with a probe height of 20 mm above a stoichiometric (Φ = 1.0) flame at a distance of 15 mm in from the edge of the burner core nearest the fluorescence monitor. The laser scan repetition rate was 3 kHz. The top trace corresponds to the unattenuated laser intensity, I0; the middle trace shows the broadband fluorescence signal, S F ; the bottom trace displays the absorption difference signal, ΔI = I0I.

Fig. 5
Fig. 5

Absorption line shape data reduction of the second line pair shown in Fig. 4: (a) the best-fit profile contrasted with a variation of ±10% in the assumed temperature at fixed a value; (b) the best-fit bracketed with variations of ±50% in the assumed a value while keeping T fixed. (Best-fit values: T = 1835 K, a = 0.175.)

Fig. 6
Fig. 6

Comparison of various temperature determinations for (a) fuel-lean (Φ = 0.8) and (b) stoichiometric (Φ = 1.0) flames. Dot–dash and dotted lines indicate the mean and extreme values, respectively, for a portion of a radiation-corrected Pt/Pt-10% Rh thermocouple scan at the optical probe height of 20 mm. The dashed line indicates the average absorption temperature inferred simultaneously with the fluorescence observations. Horizontal error bars on the fluorescence values indicate the 2-mm width of the imaged area while vertical bars correspond to a combination of uncertainty in the peak ratio due to noise and the variation in the apparent ratio during three successive line-pair sweeps. Triangles indicate the effect of an estimated radiation-trapping correction consistent with the 15-mm depth into the flame zone.

Tables (2)

Tables Icon

Table I Comparison of Center Line Temperature Determinations

Tables Icon

Table II Comparison of Fluorescence Temperature Compensations

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T ν ( I / I 0 ) ν = exp [ - 0 l k ν d x ] .
R k ν 0 [ k ν 0 ] a [ k ν 0 ] b = [ ( 2 J + 1 ) A ] a [ ( 2 J + 1 ) A ] b exp { h c k T [ E ( J ) b - E ( J ) a ] } .
R k peak = k ν ( ν 1 ) k ν ( ν 2 ) = [ S · ϕ ( ν 1 - ν 0 ) ] a + [ S · ϕ ( ν 1 - ν 0 ) ] b [ S · ϕ ( ν 2 - ν 0 ) ] b + [ S · ϕ ( ν 2 - ν 0 ) ] a ,
S F = η h v Ω 4 π A 21 N ( J ) d V .
S F = C · k ν · I laser · A 21 A 21 + Q 21 .
R F [ S F ] ν 1 [ S F ] ν 2 = [ I laser ] ν 1 [ I laser ] ν 2 { [ k ν 1 ( A / Q ) ] a + [ k ν 1 ( A / Q ) ] b } { [ k ν 2 ( A / Q ) ] b + [ k ν 2 ( A / Q ) ] a } .
R F peak = R k peak [ I laser ] ν 1 [ I laser ] ν 2 [ A ] a [ A ] b [ Q ] b [ Q ] a .
1.0 R [ A / Q ] ( [ A ] a / [ A ] b ) · ( [ Q ] b / [ Q ] a ) < ~ 1.25.

Metrics