Abstract

The first experimental results on a confocal unstable resonator with 90° beam rotation (UR90 or HiQ) are presented. A beam quality of 1.06 was observed, and it varied by a maximum of 0.08 over a resonator misalignment range of 1 mrad. The outcoupled beam’s polarization was circular. Reverse mode suppression was achieved on UR90 with a suppressed vs unsuppressed ratio of 115:1. Measurable reverse mode suppression was obtained with as little as 2% of the full reverse mode strength. Most of these results are compared with those for a conventional ring resonator.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).
  2. Yu. A. Ananev, “Unstable Laser Resonator for Low-Gain Media,” Sov. Tech. Phys. Lett. 4, 150 (1978).
  3. R. L. Sanderson, W. Striefer, “Laser Resonators with Tilted Reflectors,” Appl. Opt. 8, 2241 (1969).
    [CrossRef] [PubMed]
  4. M. M. Weiner, “Modes of Empty Off-Axis Unstable Resonators with Rectangular Mirrors,” Appl. Opt. 18, 1828 (1979).
    [CrossRef] [PubMed]
  5. Yu. A. Ananev, V. N. Chernov, V. E. Sherstobitov, “Solid Laser with a High Spatial Coherence of Radiation,” Sov. J. Quantum Electron. 1, 403 (1972).
    [CrossRef]
  6. P. E. Dyer, D. J. James, “Studies of a TEA CO2 Laser with a Cylindrical Mirror Unstable Resonator,” Opt. Commun. 15, 20 (1975).
    [CrossRef]
  7. E. A. Philips, J. P. Reilly, D. B. Northam, “Off-Axis Unstable Resonator: Operation,” Appl. Opt. 15, 2159 (1976).
    [CrossRef]
  8. A. H. Paxton, W. P. Latham, “Unstable Resonators with 90° Beam Rotation,” Appl. Opt. 25, 2939 (1986).
    [CrossRef] [PubMed]
  9. V. N. Kuprenyuk, V. E. Semenov, L. D. Smirnova, V. E. Sherstobitov, “Wave-Approximation Calculation of an Unstable Resonator with Field Rotation,” Sov. J. Quantum Electron. 13, 1613 (1984).
    [CrossRef]
  10. V. N. Kuprenyuk, V. E. Sherstobitov, “Calculations on the Mirror System of an Unstable Resonator with Field Rotation,” Sov. J. Quantum Electron. 10, 449 (1980).
    [CrossRef]
  11. A. H. Paxton, “Unstable Ring Resonator with an Intracavity Prism Beam Expander,” IEEE J. Quantum Electron. QE-23, 241 (1987).
    [CrossRef]
  12. A. I. Voronin, V. I. Kuprenyuk, “Sensitivity of Rotating-Field Unstable Cavities to Optical Distortions,” Sov. J. Opt. Technol. 48, 315 (1981).
  13. Yu. A. Ananev, V. I. Kuprenyuk, V. E. Sherstobitov, “Properties of Unstable Resonators with Field Rotation. I. Theoretical Principles,” Sov. J. Quantum Electron. 9, 1105 (1980).
    [CrossRef]
  14. K. R. Calahan, C. M. Clayton, A. H. Paxton, “Unstable Ring Resonator with a Compact Output Beam Description and Experimental Evaluation,” Appl. Opt. 27, 2694 (1988).
    [CrossRef] [PubMed]
  15. BDM Corp., “Annular Resonator Test System/Mini-Annular Resonator Test System Operation and Maintainence Report,” Report BDM/A-81-617-TR (1981).
  16. C. M. Clayton, S. J. Cusuamano, “IRIS—Automated Integrated Irradiance Measurement,” in Laser Diagnostics, Proc. Soc. Photo-Opt. Instrum. Eng. 343, 52 (1982).
  17. R. Freiberg, P. P. Chenausky, C. J. Buczek, “Asymmetric Unstable Travelling-Wave Resonators,” IEEE J. Quantum Electron. QE-10, 279 (1974).
    [CrossRef]
  18. S. Holswade, R. Riviere, K. Calahan, C. Clayton, Carl A. Huguley, “Phase Locking of Ring Lasers,” Appl. Opt. 26, 2290 (1987).
    [CrossRef] [PubMed]
  19. A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986), Sec. 21.7.

1988

1987

S. Holswade, R. Riviere, K. Calahan, C. Clayton, Carl A. Huguley, “Phase Locking of Ring Lasers,” Appl. Opt. 26, 2290 (1987).
[CrossRef] [PubMed]

A. H. Paxton, “Unstable Ring Resonator with an Intracavity Prism Beam Expander,” IEEE J. Quantum Electron. QE-23, 241 (1987).
[CrossRef]

1986

1984

V. N. Kuprenyuk, V. E. Semenov, L. D. Smirnova, V. E. Sherstobitov, “Wave-Approximation Calculation of an Unstable Resonator with Field Rotation,” Sov. J. Quantum Electron. 13, 1613 (1984).
[CrossRef]

1982

C. M. Clayton, S. J. Cusuamano, “IRIS—Automated Integrated Irradiance Measurement,” in Laser Diagnostics, Proc. Soc. Photo-Opt. Instrum. Eng. 343, 52 (1982).

1981

A. I. Voronin, V. I. Kuprenyuk, “Sensitivity of Rotating-Field Unstable Cavities to Optical Distortions,” Sov. J. Opt. Technol. 48, 315 (1981).

1980

Yu. A. Ananev, V. I. Kuprenyuk, V. E. Sherstobitov, “Properties of Unstable Resonators with Field Rotation. I. Theoretical Principles,” Sov. J. Quantum Electron. 9, 1105 (1980).
[CrossRef]

V. N. Kuprenyuk, V. E. Sherstobitov, “Calculations on the Mirror System of an Unstable Resonator with Field Rotation,” Sov. J. Quantum Electron. 10, 449 (1980).
[CrossRef]

1979

1978

Yu. A. Ananev, “Unstable Laser Resonator for Low-Gain Media,” Sov. Tech. Phys. Lett. 4, 150 (1978).

1976

1975

P. E. Dyer, D. J. James, “Studies of a TEA CO2 Laser with a Cylindrical Mirror Unstable Resonator,” Opt. Commun. 15, 20 (1975).
[CrossRef]

1974

R. Freiberg, P. P. Chenausky, C. J. Buczek, “Asymmetric Unstable Travelling-Wave Resonators,” IEEE J. Quantum Electron. QE-10, 279 (1974).
[CrossRef]

1972

Yu. A. Ananev, V. N. Chernov, V. E. Sherstobitov, “Solid Laser with a High Spatial Coherence of Radiation,” Sov. J. Quantum Electron. 1, 403 (1972).
[CrossRef]

1969

Ananev, Yu. A.

Yu. A. Ananev, V. I. Kuprenyuk, V. E. Sherstobitov, “Properties of Unstable Resonators with Field Rotation. I. Theoretical Principles,” Sov. J. Quantum Electron. 9, 1105 (1980).
[CrossRef]

Yu. A. Ananev, “Unstable Laser Resonator for Low-Gain Media,” Sov. Tech. Phys. Lett. 4, 150 (1978).

Yu. A. Ananev, V. N. Chernov, V. E. Sherstobitov, “Solid Laser with a High Spatial Coherence of Radiation,” Sov. J. Quantum Electron. 1, 403 (1972).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

Buczek, C. J.

R. Freiberg, P. P. Chenausky, C. J. Buczek, “Asymmetric Unstable Travelling-Wave Resonators,” IEEE J. Quantum Electron. QE-10, 279 (1974).
[CrossRef]

Calahan, K.

Calahan, K. R.

Chenausky, P. P.

R. Freiberg, P. P. Chenausky, C. J. Buczek, “Asymmetric Unstable Travelling-Wave Resonators,” IEEE J. Quantum Electron. QE-10, 279 (1974).
[CrossRef]

Chernov, V. N.

Yu. A. Ananev, V. N. Chernov, V. E. Sherstobitov, “Solid Laser with a High Spatial Coherence of Radiation,” Sov. J. Quantum Electron. 1, 403 (1972).
[CrossRef]

Clayton, C.

Clayton, C. M.

K. R. Calahan, C. M. Clayton, A. H. Paxton, “Unstable Ring Resonator with a Compact Output Beam Description and Experimental Evaluation,” Appl. Opt. 27, 2694 (1988).
[CrossRef] [PubMed]

C. M. Clayton, S. J. Cusuamano, “IRIS—Automated Integrated Irradiance Measurement,” in Laser Diagnostics, Proc. Soc. Photo-Opt. Instrum. Eng. 343, 52 (1982).

Cusuamano, S. J.

C. M. Clayton, S. J. Cusuamano, “IRIS—Automated Integrated Irradiance Measurement,” in Laser Diagnostics, Proc. Soc. Photo-Opt. Instrum. Eng. 343, 52 (1982).

Dyer, P. E.

P. E. Dyer, D. J. James, “Studies of a TEA CO2 Laser with a Cylindrical Mirror Unstable Resonator,” Opt. Commun. 15, 20 (1975).
[CrossRef]

Freiberg, R.

R. Freiberg, P. P. Chenausky, C. J. Buczek, “Asymmetric Unstable Travelling-Wave Resonators,” IEEE J. Quantum Electron. QE-10, 279 (1974).
[CrossRef]

Holswade, S.

Huguley, Carl A.

James, D. J.

P. E. Dyer, D. J. James, “Studies of a TEA CO2 Laser with a Cylindrical Mirror Unstable Resonator,” Opt. Commun. 15, 20 (1975).
[CrossRef]

Kuprenyuk, V. I.

A. I. Voronin, V. I. Kuprenyuk, “Sensitivity of Rotating-Field Unstable Cavities to Optical Distortions,” Sov. J. Opt. Technol. 48, 315 (1981).

Yu. A. Ananev, V. I. Kuprenyuk, V. E. Sherstobitov, “Properties of Unstable Resonators with Field Rotation. I. Theoretical Principles,” Sov. J. Quantum Electron. 9, 1105 (1980).
[CrossRef]

Kuprenyuk, V. N.

V. N. Kuprenyuk, V. E. Semenov, L. D. Smirnova, V. E. Sherstobitov, “Wave-Approximation Calculation of an Unstable Resonator with Field Rotation,” Sov. J. Quantum Electron. 13, 1613 (1984).
[CrossRef]

V. N. Kuprenyuk, V. E. Sherstobitov, “Calculations on the Mirror System of an Unstable Resonator with Field Rotation,” Sov. J. Quantum Electron. 10, 449 (1980).
[CrossRef]

Latham, W. P.

Northam, D. B.

Paxton, A. H.

Philips, E. A.

Reilly, J. P.

Riviere, R.

Sanderson, R. L.

Semenov, V. E.

V. N. Kuprenyuk, V. E. Semenov, L. D. Smirnova, V. E. Sherstobitov, “Wave-Approximation Calculation of an Unstable Resonator with Field Rotation,” Sov. J. Quantum Electron. 13, 1613 (1984).
[CrossRef]

Sherstobitov, V. E.

V. N. Kuprenyuk, V. E. Semenov, L. D. Smirnova, V. E. Sherstobitov, “Wave-Approximation Calculation of an Unstable Resonator with Field Rotation,” Sov. J. Quantum Electron. 13, 1613 (1984).
[CrossRef]

Yu. A. Ananev, V. I. Kuprenyuk, V. E. Sherstobitov, “Properties of Unstable Resonators with Field Rotation. I. Theoretical Principles,” Sov. J. Quantum Electron. 9, 1105 (1980).
[CrossRef]

V. N. Kuprenyuk, V. E. Sherstobitov, “Calculations on the Mirror System of an Unstable Resonator with Field Rotation,” Sov. J. Quantum Electron. 10, 449 (1980).
[CrossRef]

Yu. A. Ananev, V. N. Chernov, V. E. Sherstobitov, “Solid Laser with a High Spatial Coherence of Radiation,” Sov. J. Quantum Electron. 1, 403 (1972).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986), Sec. 21.7.

Smirnova, L. D.

V. N. Kuprenyuk, V. E. Semenov, L. D. Smirnova, V. E. Sherstobitov, “Wave-Approximation Calculation of an Unstable Resonator with Field Rotation,” Sov. J. Quantum Electron. 13, 1613 (1984).
[CrossRef]

Striefer, W.

Voronin, A. I.

A. I. Voronin, V. I. Kuprenyuk, “Sensitivity of Rotating-Field Unstable Cavities to Optical Distortions,” Sov. J. Opt. Technol. 48, 315 (1981).

Weiner, M. M.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

Appl. Opt.

IEEE J. Quantum Electron.

R. Freiberg, P. P. Chenausky, C. J. Buczek, “Asymmetric Unstable Travelling-Wave Resonators,” IEEE J. Quantum Electron. QE-10, 279 (1974).
[CrossRef]

A. H. Paxton, “Unstable Ring Resonator with an Intracavity Prism Beam Expander,” IEEE J. Quantum Electron. QE-23, 241 (1987).
[CrossRef]

Laser Diagnostics

C. M. Clayton, S. J. Cusuamano, “IRIS—Automated Integrated Irradiance Measurement,” in Laser Diagnostics, Proc. Soc. Photo-Opt. Instrum. Eng. 343, 52 (1982).

Opt. Commun.

P. E. Dyer, D. J. James, “Studies of a TEA CO2 Laser with a Cylindrical Mirror Unstable Resonator,” Opt. Commun. 15, 20 (1975).
[CrossRef]

Sov. J. Opt. Technol.

A. I. Voronin, V. I. Kuprenyuk, “Sensitivity of Rotating-Field Unstable Cavities to Optical Distortions,” Sov. J. Opt. Technol. 48, 315 (1981).

Sov. J. Quantum Electron.

Yu. A. Ananev, V. I. Kuprenyuk, V. E. Sherstobitov, “Properties of Unstable Resonators with Field Rotation. I. Theoretical Principles,” Sov. J. Quantum Electron. 9, 1105 (1980).
[CrossRef]

V. N. Kuprenyuk, V. E. Semenov, L. D. Smirnova, V. E. Sherstobitov, “Wave-Approximation Calculation of an Unstable Resonator with Field Rotation,” Sov. J. Quantum Electron. 13, 1613 (1984).
[CrossRef]

V. N. Kuprenyuk, V. E. Sherstobitov, “Calculations on the Mirror System of an Unstable Resonator with Field Rotation,” Sov. J. Quantum Electron. 10, 449 (1980).
[CrossRef]

Yu. A. Ananev, V. N. Chernov, V. E. Sherstobitov, “Solid Laser with a High Spatial Coherence of Radiation,” Sov. J. Quantum Electron. 1, 403 (1972).
[CrossRef]

Sov. Tech. Phys. Lett.

Yu. A. Ananev, “Unstable Laser Resonator for Low-Gain Media,” Sov. Tech. Phys. Lett. 4, 150 (1978).

Other

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

BDM Corp., “Annular Resonator Test System/Mini-Annular Resonator Test System Operation and Maintainence Report,” Report BDM/A-81-617-TR (1981).

A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986), Sec. 21.7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Layout of the first UR90 resonator.

Fig. 2
Fig. 2

Layout of the second UR90 resonator.

Fig. 3
Fig. 3

Layout of the simple ring resonator.

Fig. 4
Fig. 4

Far-field data collection apparatus used for measuring beam quality.

Fig. 5
Fig. 5

Plot of beam quality vs horizontal misalignment of the concave telescope element for the UR90 resonator.

Fig. 6
Fig. 6

Plot of beam quality vs vertical misalignment of the concave telescope element for the UR90 resonator.

Fig. 7
Fig. 7

Plot of power/BQ vs vertical misalignment of the concave telescope element for the UR90 resonator.

Fig. 8
Fig. 8

Plot of power/BQ vs vertical misalignment of the concave telescope element for the UR90 resonator.

Fig. 9
Fig. 9

Plot of detected power vs analyzer angle for the UR90 far-field forward mode. Since the beam first passed through a quarter-wave plate, the plot indicates circular polarization.

Fig. 10
Fig. 10

Plot of intracavity reverse mode power vs reverse mode suppressor alignment for the simple ring resonator.

Fig. 11
Fig. 11

Plot of reverse mode power (in arbitrary units) vs the linear position of the reverse mode suppressor mirror for the simple ring resonator. The plot exhibits a rough sinusoidal relationship with a period of ~5 μm.

Fig. 12
Fig. 12

Plot of the reverse mode suppression ratio vs the percentage of the exiting reverse mode power reinjected for the UR90 resonator. Measurable suppression was seen with as little as 2% of the outcoupled reverse mode power.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

L eq = ( 1 + 1 / M 2 ) ( L a + L b / M + L c / M 2 ) ,
N eq = a 2 ( M 4 - 1 ) 2 λ M 4 L eq = a 2 ( M 2 - 1 ) 2 λ ( M 2 L a + M L b + L c ) ,
B Q = ( PIB theo PIB exp ) 1 / 2 ,
Ref 1 = P f D 1 P r D 2 ,             Ref 2 = P f D 2 P r D 1 ,
Norm = P r w D 1 P f w D 2 ,
Supp = P r s D 1 P f s D 2 ,
λ i F i ( x , y ) = K F * F i ( x , y ) ,
λ ¯ i B i = K B * B i .
F i l F i ( x , y ) l ; F i r F i ( x , y ) r ; B i l B i ( x , y ) l ; B i r B i ( x , y ) r ,
B i F j d x d y B i ( x , y ) F j ( x , y ) δ i j .
λ i l λ i and λ i r = λ i exp ( i 2 θ rot ) ,
λ i corresponds to F i ( x , y ) l and B i ( x , y ) l ;
λ i exp ( i 2 θ rot ) corresponds to F i ( x , y ) r and B i ( x , y ) r .
λ F = K f * F + R + * B , λ B = K B * B + R * F ,
F ( x , y ) = m f m l F m ( x , y ) l + m f m r F m ( x , y ) r ,
B ( x , y ) = m b m l B m ( x , y ) l + m b m r B m ( x , y ) r .
[ B s ( x , y ) l ] , [ F s ( x , y ) l ] , [ B s ( x , y ) r ] , and [ F s ( x , y ) r ] .
λ f 0 l = λ 0 l f 0 l + m = 0 N b m l B 0 l R + B m l + m = 0 N b m r B 0 l R + B m r ;
λ b 0 l = λ 0 l b 0 l + m = 0 N f m l F 0 l R - F m l + m = 0 N f m r F 0 l R - F m r ;
λ f 0 r = λ 0 r f 0 r + m = 0 N b m l B 0 r R + B m l + m = 0 N b m r B 0 r R + B m r ;
λ b 0 r = λ 0 r b 0 r + m = 0 N f m l F 0 r R - F m l + m = 0 N f m r F 0 r R - F m r .
λ λ 0 ,
( λ - λ 0 l ) f 0 l b 0 l B 0 l R + B 0 l , ( λ - λ 0 l ) b 0 l f 0 l F 0 l R - F 0 l .
( λ - λ 0 l ) = ± [ B 0 l R + B 0 l F 0 l R - F 0 l ] 1 / 2 ,
| f 0 l b 0 l | 2 = | B 0 l R + B 0 l F 0 l R - F 0 l | .
B 0 l R + B 0 l

Metrics