Abstract

We have demonstrated the feasibility of diffractive–reflective optical interconnects. These interconnects consist of a sandwich of a holographic plane and a reflective plane. Various possibilities like beam relaying, connection switching, and broadcasting are discussed.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
    [CrossRef]
  2. R. K. Kostuk, J. W Goodman, L. Hesselink, “Optical Imaging Applied to Microelectronic Chip-to-Chip Interconnections,” Appl. Opt. 24, 2851 (1985).
    [CrossRef] [PubMed]
  3. L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, “Holographic Optical Interconnects for VLST,” Opt. Eng. 25, 1109 (1986).
    [CrossRef]
  4. M. R. Feldman, C. C. Guest, “Computer Generated Holographic Optical Elements for Optical Interconnection of Very Large Scale Integrated Circuits,” Appl. Opt. 26, 4377 (1987).
    [CrossRef] [PubMed]
  5. H. Kogelnik, T. P. Sosnowski, Bell Syst. Tech. J. 49, 1602 (1970).
  6. B. J. Chang, S. K. Case, “Nonlinear Holographic Waveguide Coupler,” Appl. Opt. 15, 1800 (1976).
    [CrossRef] [PubMed]
  7. A. W. Lohmann, F. Sauer, “Holographic Telescope Arrays,” Appl. Opt. 27, 3003 (1988).
    [CrossRef] [PubMed]
  8. K.-R. Hase, “Theoretical Model for Light-Guiding-Plates in Bus Systems,” Arch. Elektronik Übertragungstechnik, 41, 156 (1987).
  9. A. C. Walker, “Application of Bistable Optical Logic Gate Arrays to All-Optical Digital Parallel Processing,” Appl. Opt. 25, 1578 (1986).
    [CrossRef] [PubMed]
  10. C. R. Paton, S. D. Smith, A. C. Walker, “An All-Optical Switch for Signal Routing Between Fibres,” in Technical Digest of Topical Meeting on Photonic Switching (Optical Society of America, Washington, DC, 1987).

1988

1987

K.-R. Hase, “Theoretical Model for Light-Guiding-Plates in Bus Systems,” Arch. Elektronik Übertragungstechnik, 41, 156 (1987).

M. R. Feldman, C. C. Guest, “Computer Generated Holographic Optical Elements for Optical Interconnection of Very Large Scale Integrated Circuits,” Appl. Opt. 26, 4377 (1987).
[CrossRef] [PubMed]

1986

A. C. Walker, “Application of Bistable Optical Logic Gate Arrays to All-Optical Digital Parallel Processing,” Appl. Opt. 25, 1578 (1986).
[CrossRef] [PubMed]

L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, “Holographic Optical Interconnects for VLST,” Opt. Eng. 25, 1109 (1986).
[CrossRef]

1985

1984

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

1976

1970

H. Kogelnik, T. P. Sosnowski, Bell Syst. Tech. J. 49, 1602 (1970).

Athale, R.

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

Bergman, L. A.

L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, “Holographic Optical Interconnects for VLST,” Opt. Eng. 25, 1109 (1986).
[CrossRef]

Case, S. K.

Chang, B. J.

Feldman, M. R.

Goodman, J. W

Goodman, J. W.

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

Guest, C. C.

Hase, K.-R.

K.-R. Hase, “Theoretical Model for Light-Guiding-Plates in Bus Systems,” Arch. Elektronik Übertragungstechnik, 41, 156 (1987).

Hesselink, L.

Johnston, A. R.

L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, “Holographic Optical Interconnects for VLST,” Opt. Eng. 25, 1109 (1986).
[CrossRef]

Kogelnik, H.

H. Kogelnik, T. P. Sosnowski, Bell Syst. Tech. J. 49, 1602 (1970).

Kostuk, R. K.

Kung, S. Y.

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

Leonberger, F. J.

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

Lohmann, A. W.

Nixon, R.

L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, “Holographic Optical Interconnects for VLST,” Opt. Eng. 25, 1109 (1986).
[CrossRef]

Paton, C. R.

C. R. Paton, S. D. Smith, A. C. Walker, “An All-Optical Switch for Signal Routing Between Fibres,” in Technical Digest of Topical Meeting on Photonic Switching (Optical Society of America, Washington, DC, 1987).

Sauer, F.

Smith, S. D.

C. R. Paton, S. D. Smith, A. C. Walker, “An All-Optical Switch for Signal Routing Between Fibres,” in Technical Digest of Topical Meeting on Photonic Switching (Optical Society of America, Washington, DC, 1987).

Sosnowski, T. P.

H. Kogelnik, T. P. Sosnowski, Bell Syst. Tech. J. 49, 1602 (1970).

Walker, A. C.

A. C. Walker, “Application of Bistable Optical Logic Gate Arrays to All-Optical Digital Parallel Processing,” Appl. Opt. 25, 1578 (1986).
[CrossRef] [PubMed]

C. R. Paton, S. D. Smith, A. C. Walker, “An All-Optical Switch for Signal Routing Between Fibres,” in Technical Digest of Topical Meeting on Photonic Switching (Optical Society of America, Washington, DC, 1987).

Wu, W. H.

L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, “Holographic Optical Interconnects for VLST,” Opt. Eng. 25, 1109 (1986).
[CrossRef]

Appl. Opt.

Arch. Elektronik Übertragungstechnik

K.-R. Hase, “Theoretical Model for Light-Guiding-Plates in Bus Systems,” Arch. Elektronik Übertragungstechnik, 41, 156 (1987).

Bell Syst. Tech. J.

H. Kogelnik, T. P. Sosnowski, Bell Syst. Tech. J. 49, 1602 (1970).

Opt. Eng.

L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, “Holographic Optical Interconnects for VLST,” Opt. Eng. 25, 1109 (1986).
[CrossRef]

Proc. IEEE

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

Other

C. R. Paton, S. D. Smith, A. C. Walker, “An All-Optical Switch for Signal Routing Between Fibres,” in Technical Digest of Topical Meeting on Photonic Switching (Optical Society of America, Washington, DC, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Chip-to-chip communication with a single reflection hologram.

Fig. 2
Fig. 2

Diffractive–reflective optical interconnect with a collimated beam.

Fig. 3
Fig. 3

Displacement and angle change resulting from mirror tilt.

Fig. 4
Fig. 4

Diffractive–reflective optical interconnect with a focused beam.

Fig. 5
Fig. 5

Nearest-neighbor broadcasting by using a hologram as a beam splitter.

Fig. 6
Fig. 6

Extension of the interconnect distance by introducing several reflections.

Fig. 7
Fig. 7

Connection switching: an external control beam switches a nonlinear mirror from transmission to reflection.

Fig. 8
Fig. 8

Demonstration of DROIs. The divergent light beam behind the focus of a Selfoc lens is collimated and deflected by the first hololens (left-hand side). (a) After reflection from the mirror (top) the light is refocused by the second hololens (right-hand side). (b) The collimated light beam is reflected several times between two mirror layers and then refocused by the second hololens.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ x = h * ( cot ( θ - 2 ɛ ) - cot θ ) ,
Δ x = 2 h ɛ / ( sin 2 θ - 2 ɛ sin θ cos θ ) .
w ( z ) = w 0 1 + λ 2 z 2 π 2 n 2 w 0 4 ,
Δ x = 2 Δ h / tan θ
Δ s = 2 Δ h / sin θ
Δ θ = 2 ( Δ h / h ) sin θ cos θ

Metrics