Abstract

Reflectance vs incidence angle measurements have been performed from 24 Å to 1216 Å on electron-beam evaporated samples of Ti, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, Pt, and Au, and using a nonlinear least-squares curve-fitting technique, the optical constants have been determined. Independently measured values of the incident beam polarization, film thicknesses, and film surface roughnesses are incorporated into the derivation of the optical constants. Additionally, Auger electron spectroscopy depth profiling measurements have been performed on each sample to characterize sample composition including oxidation and contamination.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Windt et al., “Optical Constants for Thin Films of C, Diamond, Al, Si, and CVD SiC from 24 Å to 1216 Å,” Appl. Opt. 37, 000 (15Jan.1988).
  2. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for the 100 to 2000 eV Photon Energy Region,” AIP Conf. Proc 75, 340 (1981).
    [CrossRef]
  3. D. W. Lynch, C. G. Olson, J. H. Weaver, “Optical Properties of Ti, Zr, and Hf from 0.15 to 30 eV,” Phys. Rev. B 11, 3617 (1975).
    [CrossRef]
  4. J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physik Daten, Physics Data: Optical Properties of Metals, Vol. 18-1, Vol. 18-2 (Fach-information zentrum, Karlsruhe, 1981).
  5. J. H. Weaver, D. W. Lynch, C. G. Olson, “Optical Properties of Niobium from 0.1 to 36.4 eV,” Phys. Rev. B 7, 4311 (1973).
    [CrossRef]
  6. J. H. Weaver, D. W. Lynch, C. G. Olson, “Optical Properties of V, Ta, and Mo from 0.1 to 35 eV,” Phys. Rev. B 10, 501 (1974).
    [CrossRef]
  7. D. W. Juenker, L. J. LeBlanc, C. R. Martin, “Optical Properties of Some Transition Metals,” J. Opt. Soc. Am. 58, 164 (1968).
    [CrossRef]
  8. E. D. Palik, Handbook of Optical Constants of Solids, E. D. Palik, Ed. (Academic, Orlando, 1985).
  9. J. T. Cox, G. Hass, J. B. Ramsey, W. R. Hunter, “Reflectance and Optical Constants of Evaporated Ruthenium in the Vacuum Ultraviolet from 300 Å to 2000 Å,” J. Opt. Soc. Am. 64, 423 (1974).
    [CrossRef]
  10. J. T. Cox, G. Hass, W. R. Hunter, “Optical Properties of Evaporated Rhodium Films Deposited at Various Substrate Temperatures in the Vacuum Ultraviolet from 150 to 2000 Å,” J. Opt. Soc. Am. 61, 360 (1971).
    [CrossRef]
  11. J. H. Weaver, C. G. Olson, D. W. Lynch, “Optical Investigation of the Electronic Structure of Bulk Rh and Ir,” Phys. Rev. B 15, 4115 (1977).
    [CrossRef]
  12. J. H. Weaver, R. L. Benbow, “Low Energy Interband Absorption in Pd,” Phys. Rev. B 12, 3509 (1975).
    [CrossRef]
  13. N. J. Hagemann, W. Gudat, C. Kunz, “Optical Constants from the Far Infrared to the X-ray Region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” DESY Report SR-74/7, Hamburg (1974).
  14. G. Leveque, C. G. Olson, D. W. Lynch, “Reflectance Spectra and Dielectric Functions for Ag in the Region of Interband Transitions,” Phys. Rev. B 27, 4654 (1983).
    [CrossRef]
  15. J. T. Cox, G. Hass, J. B. Ramsey, W. R. Hunter, “Reflectance of Evaporated Rhenium and Tungsten Films in the Vacuum Ultraviolet from 300 Å,” J. Opt. Soc. Am. 62, 781 (1972).
    [CrossRef]
  16. J. H. Weaver, C. G. Olson, D. W. Lynch, “Optical Properties of Crystalline Tungsten,” Phys. Rev. B. 12, 1293 (1975).
    [CrossRef]
  17. J. T. Cox, G. Hass, J. B. Ramsey, W. R. Hunter, “Reflectance and Optical Constants of Evaporated Osmium in the Vaccuum Ultraviolet from 300 Å to 2000 Å,” J. Opt. Soc. Am. 63, 435 (1973).
    [CrossRef]
  18. G. Hass, G. F. Jacobus, W. R. Hunter, “Optical Properties of Evaporated Iridium in the Vacuum Ultraviolet from 500 Å to 2000 Å,” J. Opt. Soc. Am. 57, 758 (1967).
    [CrossRef]
  19. W. R. Hunter, D. W. Angel, G. Hass, “Optical Properties of Evaporated Platinum Films in the Vacuum Ultraviolet from 2200 Å to 150 Å,” J. Opt. Soc. Am. 69, 1695 (1979).
    [CrossRef]
  20. J. H. Weaver, “Optical Properties of Rh, Pd, Ir, and Pt,” Phys. Rev. B 11, 1416 (1975).
    [CrossRef]
  21. M. V. Zombeck, G. K. Austin, D. T. Torgerson, “Add Title,” Smithsonian Astrophysical Observatory Report SAO-AXAF-80-003, Appendix B, Table B1, Cambridge, MA (1980).
  22. R. Canfield, G. Hass, W. R. Hunter, “The Optical Properties of Evaporated Gold in the Vacuum Ultraviolet from 300 Å to 2000 Å,” J. Phys. 25, 124 (1964).
    [CrossRef]

1988 (1)

D. L. Windt et al., “Optical Constants for Thin Films of C, Diamond, Al, Si, and CVD SiC from 24 Å to 1216 Å,” Appl. Opt. 37, 000 (15Jan.1988).

1983 (1)

G. Leveque, C. G. Olson, D. W. Lynch, “Reflectance Spectra and Dielectric Functions for Ag in the Region of Interband Transitions,” Phys. Rev. B 27, 4654 (1983).
[CrossRef]

1981 (1)

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for the 100 to 2000 eV Photon Energy Region,” AIP Conf. Proc 75, 340 (1981).
[CrossRef]

1979 (1)

1977 (1)

J. H. Weaver, C. G. Olson, D. W. Lynch, “Optical Investigation of the Electronic Structure of Bulk Rh and Ir,” Phys. Rev. B 15, 4115 (1977).
[CrossRef]

1975 (4)

J. H. Weaver, R. L. Benbow, “Low Energy Interband Absorption in Pd,” Phys. Rev. B 12, 3509 (1975).
[CrossRef]

D. W. Lynch, C. G. Olson, J. H. Weaver, “Optical Properties of Ti, Zr, and Hf from 0.15 to 30 eV,” Phys. Rev. B 11, 3617 (1975).
[CrossRef]

J. H. Weaver, C. G. Olson, D. W. Lynch, “Optical Properties of Crystalline Tungsten,” Phys. Rev. B. 12, 1293 (1975).
[CrossRef]

J. H. Weaver, “Optical Properties of Rh, Pd, Ir, and Pt,” Phys. Rev. B 11, 1416 (1975).
[CrossRef]

1974 (2)

1973 (2)

1972 (1)

1971 (1)

1968 (1)

1967 (1)

1964 (1)

R. Canfield, G. Hass, W. R. Hunter, “The Optical Properties of Evaporated Gold in the Vacuum Ultraviolet from 300 Å to 2000 Å,” J. Phys. 25, 124 (1964).
[CrossRef]

Angel, D. W.

Austin, G. K.

M. V. Zombeck, G. K. Austin, D. T. Torgerson, “Add Title,” Smithsonian Astrophysical Observatory Report SAO-AXAF-80-003, Appendix B, Table B1, Cambridge, MA (1980).

Benbow, R. L.

J. H. Weaver, R. L. Benbow, “Low Energy Interband Absorption in Pd,” Phys. Rev. B 12, 3509 (1975).
[CrossRef]

Canfield, R.

R. Canfield, G. Hass, W. R. Hunter, “The Optical Properties of Evaporated Gold in the Vacuum Ultraviolet from 300 Å to 2000 Å,” J. Phys. 25, 124 (1964).
[CrossRef]

Cox, J. T.

Fujikawa, B. K.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for the 100 to 2000 eV Photon Energy Region,” AIP Conf. Proc 75, 340 (1981).
[CrossRef]

Gudat, W.

N. J. Hagemann, W. Gudat, C. Kunz, “Optical Constants from the Far Infrared to the X-ray Region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” DESY Report SR-74/7, Hamburg (1974).

Hagemann, N. J.

N. J. Hagemann, W. Gudat, C. Kunz, “Optical Constants from the Far Infrared to the X-ray Region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” DESY Report SR-74/7, Hamburg (1974).

Hass, G.

Henke, B. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for the 100 to 2000 eV Photon Energy Region,” AIP Conf. Proc 75, 340 (1981).
[CrossRef]

Hunter, W. R.

Jacobus, G. F.

Juenker, D. W.

Koch, E. E.

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physik Daten, Physics Data: Optical Properties of Metals, Vol. 18-1, Vol. 18-2 (Fach-information zentrum, Karlsruhe, 1981).

Krafka, C.

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physik Daten, Physics Data: Optical Properties of Metals, Vol. 18-1, Vol. 18-2 (Fach-information zentrum, Karlsruhe, 1981).

Kunz, C.

N. J. Hagemann, W. Gudat, C. Kunz, “Optical Constants from the Far Infrared to the X-ray Region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” DESY Report SR-74/7, Hamburg (1974).

LeBlanc, L. J.

Lee, P.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for the 100 to 2000 eV Photon Energy Region,” AIP Conf. Proc 75, 340 (1981).
[CrossRef]

Leveque, G.

G. Leveque, C. G. Olson, D. W. Lynch, “Reflectance Spectra and Dielectric Functions for Ag in the Region of Interband Transitions,” Phys. Rev. B 27, 4654 (1983).
[CrossRef]

Lynch, D. W.

G. Leveque, C. G. Olson, D. W. Lynch, “Reflectance Spectra and Dielectric Functions for Ag in the Region of Interband Transitions,” Phys. Rev. B 27, 4654 (1983).
[CrossRef]

J. H. Weaver, C. G. Olson, D. W. Lynch, “Optical Investigation of the Electronic Structure of Bulk Rh and Ir,” Phys. Rev. B 15, 4115 (1977).
[CrossRef]

J. H. Weaver, C. G. Olson, D. W. Lynch, “Optical Properties of Crystalline Tungsten,” Phys. Rev. B. 12, 1293 (1975).
[CrossRef]

D. W. Lynch, C. G. Olson, J. H. Weaver, “Optical Properties of Ti, Zr, and Hf from 0.15 to 30 eV,” Phys. Rev. B 11, 3617 (1975).
[CrossRef]

J. H. Weaver, D. W. Lynch, C. G. Olson, “Optical Properties of V, Ta, and Mo from 0.1 to 35 eV,” Phys. Rev. B 10, 501 (1974).
[CrossRef]

J. H. Weaver, D. W. Lynch, C. G. Olson, “Optical Properties of Niobium from 0.1 to 36.4 eV,” Phys. Rev. B 7, 4311 (1973).
[CrossRef]

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physik Daten, Physics Data: Optical Properties of Metals, Vol. 18-1, Vol. 18-2 (Fach-information zentrum, Karlsruhe, 1981).

Martin, C. R.

Olson, C. G.

G. Leveque, C. G. Olson, D. W. Lynch, “Reflectance Spectra and Dielectric Functions for Ag in the Region of Interband Transitions,” Phys. Rev. B 27, 4654 (1983).
[CrossRef]

J. H. Weaver, C. G. Olson, D. W. Lynch, “Optical Investigation of the Electronic Structure of Bulk Rh and Ir,” Phys. Rev. B 15, 4115 (1977).
[CrossRef]

D. W. Lynch, C. G. Olson, J. H. Weaver, “Optical Properties of Ti, Zr, and Hf from 0.15 to 30 eV,” Phys. Rev. B 11, 3617 (1975).
[CrossRef]

J. H. Weaver, C. G. Olson, D. W. Lynch, “Optical Properties of Crystalline Tungsten,” Phys. Rev. B. 12, 1293 (1975).
[CrossRef]

J. H. Weaver, D. W. Lynch, C. G. Olson, “Optical Properties of V, Ta, and Mo from 0.1 to 35 eV,” Phys. Rev. B 10, 501 (1974).
[CrossRef]

J. H. Weaver, D. W. Lynch, C. G. Olson, “Optical Properties of Niobium from 0.1 to 36.4 eV,” Phys. Rev. B 7, 4311 (1973).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, E. D. Palik, Ed. (Academic, Orlando, 1985).

Ramsey, J. B.

Shimabukuro, R. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for the 100 to 2000 eV Photon Energy Region,” AIP Conf. Proc 75, 340 (1981).
[CrossRef]

Tanaka, T. J.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for the 100 to 2000 eV Photon Energy Region,” AIP Conf. Proc 75, 340 (1981).
[CrossRef]

Torgerson, D. T.

M. V. Zombeck, G. K. Austin, D. T. Torgerson, “Add Title,” Smithsonian Astrophysical Observatory Report SAO-AXAF-80-003, Appendix B, Table B1, Cambridge, MA (1980).

Weaver, J. H.

J. H. Weaver, C. G. Olson, D. W. Lynch, “Optical Investigation of the Electronic Structure of Bulk Rh and Ir,” Phys. Rev. B 15, 4115 (1977).
[CrossRef]

J. H. Weaver, R. L. Benbow, “Low Energy Interband Absorption in Pd,” Phys. Rev. B 12, 3509 (1975).
[CrossRef]

D. W. Lynch, C. G. Olson, J. H. Weaver, “Optical Properties of Ti, Zr, and Hf from 0.15 to 30 eV,” Phys. Rev. B 11, 3617 (1975).
[CrossRef]

J. H. Weaver, C. G. Olson, D. W. Lynch, “Optical Properties of Crystalline Tungsten,” Phys. Rev. B. 12, 1293 (1975).
[CrossRef]

J. H. Weaver, “Optical Properties of Rh, Pd, Ir, and Pt,” Phys. Rev. B 11, 1416 (1975).
[CrossRef]

J. H. Weaver, D. W. Lynch, C. G. Olson, “Optical Properties of V, Ta, and Mo from 0.1 to 35 eV,” Phys. Rev. B 10, 501 (1974).
[CrossRef]

J. H. Weaver, D. W. Lynch, C. G. Olson, “Optical Properties of Niobium from 0.1 to 36.4 eV,” Phys. Rev. B 7, 4311 (1973).
[CrossRef]

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physik Daten, Physics Data: Optical Properties of Metals, Vol. 18-1, Vol. 18-2 (Fach-information zentrum, Karlsruhe, 1981).

Windt, D. L.

D. L. Windt et al., “Optical Constants for Thin Films of C, Diamond, Al, Si, and CVD SiC from 24 Å to 1216 Å,” Appl. Opt. 37, 000 (15Jan.1988).

Zombeck, M. V.

M. V. Zombeck, G. K. Austin, D. T. Torgerson, “Add Title,” Smithsonian Astrophysical Observatory Report SAO-AXAF-80-003, Appendix B, Table B1, Cambridge, MA (1980).

AIP Conf. Proc (1)

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for the 100 to 2000 eV Photon Energy Region,” AIP Conf. Proc 75, 340 (1981).
[CrossRef]

Appl. Opt. (1)

D. L. Windt et al., “Optical Constants for Thin Films of C, Diamond, Al, Si, and CVD SiC from 24 Å to 1216 Å,” Appl. Opt. 37, 000 (15Jan.1988).

J. Opt. Soc. Am. (7)

J. Phys. (1)

R. Canfield, G. Hass, W. R. Hunter, “The Optical Properties of Evaporated Gold in the Vacuum Ultraviolet from 300 Å to 2000 Å,” J. Phys. 25, 124 (1964).
[CrossRef]

Phys. Rev. B (7)

J. H. Weaver, “Optical Properties of Rh, Pd, Ir, and Pt,” Phys. Rev. B 11, 1416 (1975).
[CrossRef]

D. W. Lynch, C. G. Olson, J. H. Weaver, “Optical Properties of Ti, Zr, and Hf from 0.15 to 30 eV,” Phys. Rev. B 11, 3617 (1975).
[CrossRef]

G. Leveque, C. G. Olson, D. W. Lynch, “Reflectance Spectra and Dielectric Functions for Ag in the Region of Interband Transitions,” Phys. Rev. B 27, 4654 (1983).
[CrossRef]

J. H. Weaver, D. W. Lynch, C. G. Olson, “Optical Properties of Niobium from 0.1 to 36.4 eV,” Phys. Rev. B 7, 4311 (1973).
[CrossRef]

J. H. Weaver, D. W. Lynch, C. G. Olson, “Optical Properties of V, Ta, and Mo from 0.1 to 35 eV,” Phys. Rev. B 10, 501 (1974).
[CrossRef]

J. H. Weaver, C. G. Olson, D. W. Lynch, “Optical Investigation of the Electronic Structure of Bulk Rh and Ir,” Phys. Rev. B 15, 4115 (1977).
[CrossRef]

J. H. Weaver, R. L. Benbow, “Low Energy Interband Absorption in Pd,” Phys. Rev. B 12, 3509 (1975).
[CrossRef]

Phys. Rev. B. (1)

J. H. Weaver, C. G. Olson, D. W. Lynch, “Optical Properties of Crystalline Tungsten,” Phys. Rev. B. 12, 1293 (1975).
[CrossRef]

Other (4)

M. V. Zombeck, G. K. Austin, D. T. Torgerson, “Add Title,” Smithsonian Astrophysical Observatory Report SAO-AXAF-80-003, Appendix B, Table B1, Cambridge, MA (1980).

N. J. Hagemann, W. Gudat, C. Kunz, “Optical Constants from the Far Infrared to the X-ray Region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” DESY Report SR-74/7, Hamburg (1974).

E. D. Palik, Handbook of Optical Constants of Solids, E. D. Palik, Ed. (Academic, Orlando, 1985).

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physik Daten, Physics Data: Optical Properties of Metals, Vol. 18-1, Vol. 18-2 (Fach-information zentrum, Karlsruhe, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (48)

Fig. 1
Fig. 1

Peak-to-peak intensity of Auger signal (arbitrary units) vs sputtering time for titanium film.

Fig. 2
Fig. 2

Index of refraction for titanium vs wavelength from (a) 0 Å to 200 Å and (b) 200 Å to 1400 Å and extinction coefficient from (c) 0 Å to 200 Å and (d) 200 Å to 1400 Å. Shown also are the data of Henke et al.2 (dots) and Lynch et al.3 (dashes).

Fig. 3
Fig. 3

(a) Reflectance of titanium vs wavelength at six incidence angles: 0, 45, 60, 75, 85, and 89°. (b) Normal incidence reflectance vs wavelength. The data of Lynch et al.3 (dashes) are shown for comparison.

Fig. 4
Fig. 4

Peak-to-peak intensity of Auger signal (arbitrary units) vs sputtering time for zirconium film.

Fig. 5
Fig. 5

Index of refraction for zirconium vs wavelength from (a) 0 Å to 200 Å and (b) 200 Å to 1400 Å and extinction coefficient from (c) 0 Å to 200 Å and (d) 200 Å to 1400 Å. Shown also are the data of Henke et al.2 (dots), Lynch et al.3 (dashes), and Lynch, Olson, and Weaver (unpublished) (dot–dash).

Fig. 6
Fig. 6

(a) Reflectance of zirconium vs wavelength at six incidence angles: 0, 45, 60, 75, 85, and 89°. (b) Normal incidence reflectance vs wavelength. The data of Lynch et al.3 (dashes) and Lynch, Olson, and Weaver (unpublished) (dot–dash) are shown for comparison.

Fig. 7
Fig. 7

Peak-to-peak intensity of Auger signal (arbitrary units) vs sputtering time for niobium film.

Fig. 8
Fig. 8

Index of refraction for niobium vs wavelength from (a) 0 Å to 200 Å and (b) 200 Å to 1400 Å and the extinction coefficient from (c) 0 Å to 200 Å and (d) 200 Å to 1400 Å. Shown also are the data of Henke et al.2 (dots) and Weaver et al.5 (dashes).

Fig. 9
Fig. 9

(a) Reflectance of niobium vs wavelength at six incidence angles: 0, 45, 60, 75, 85, and 89°. (b) Normal incidence reflectance vs wavelength. The data of Weaver et al.5 (dashes) are shown for comparison.

Fig. 10
Fig. 10

Peak-to-peak intensity of Auger signal (arbitrary units) vs sputtering time for molybdenum film.

Fig. 11
Fig. 11

Index of refraction for molybdenum vs wavelength from (a) 0 Å to 200 Å and (b) 200 Å to 1400 Å and extinction coefficient from (c) 0 Å to 200 Å and (d) 200 Å to 1400 Å. Shown also are the data of Henke et al.2 (dots) and Palik8 (dashes).

Fig. 12
Fig. 12

(a) Reflectance of molybdenum vs wavelength at six incidence angles: 0, 45, 60, 75, 85, and 89°. (b) Normal incidence reflectance vs wavelength. The data of Palik8 (dashes) are shown for comparison.

Fig. 13
Fig. 13

Peak-to-peak intensity of Auger signal (arbitrary units) vs sputtering time for ruthenium film.

Fig. 14
Fig. 14

Index of refraction for ruthenium vs wavelength from (a) 0 Å to 200 Å and (b) 200 Å to 1400 Å and extinction coefficient from (c) 0 Å to 200 Å and (d) 200 Å to 1400 Å. Shown also are the data of Henke et al.2 (dots), Cox et al.9 (dashes), and Weaver et al.4 with Ec (dot–dash) and with Ec (dot–long dash).

Fig. 15
Fig. 15

(a) Reflectance of ruthenium vs wavelength at six incidence angles: 0, 45, 60, 75, 85, and 89°. (b) Normal incidence reflectance vs wavelength. The data of Cox et al.9 (dashes) and Weaver et al.4 with Ec (dot–dash) and with Ec (dot–long dash) are shown for comparison.

Fig. 16
Fig. 16

Peak-to-peak intensity of Auger signal (arbitrary units) vs sputtering time for rhodium film.

Fig. 17
Fig. 17

Index of refraction for rhodium vs wavelength from (a) 0 Å to 200 Å and (b) 200 Å to 1400 Å and extinction coefficient from (c) 0 Å to 200 Å and (d) 200 Å to 1400 Å. Shown also are the data of Henke et al.2 (dots), Cox et al.10 (dashes), and Weaver et al.11 (dot–dash).

Fig. 18
Fig. 18

(a) Reflectance of rhodium vs wavelength at six incidence angles: 0, 45, 60, 75, 85, and 89°. (b) Normal incidence reflectance vs wavelength. The data of Cox et al.10 (dashes) and Weaver et al.11 (dot–dash) are shown for comparison.

Fig. 19
Fig. 19

Peak-to-peak intensity of Auger signal (arbitrary units) vs sputtering time for palladium film.

Fig. 20
Fig. 20

Index of refraction for palladium vs wavelength from (a) 0 Å to 200 Å and (b) 200 Å to 1400 Å and extinction coefficient from (c) 0 Å to 200 Å and (d) 200 Å to 1400 Å. Shown also are the data of Henke et al.2 (dots) and Weaver and Benbow12 (dashes).

Fig. 21
Fig. 21

(a) Reflectance of palladium vs wavelength at six incidence angles: 0, 45, 60, 75, 85, and 89°. (b) Normal incidence reflectance vs wavelength. The data of Weaver and Benbow12 (dashes) are shown for comparison.

Fig. 22
Fig. 22

Peak-to-peak intensity of Auger signal (arbitrary units) vs sputtering time for silver film.

Fig. 23
Fig. 23

Index of refraction for silver vs wavelength from (a) 0 Å to 200 Å and (b) 200 Å to 1400 Å and extinction coefficient from (c) 0 Å to 200 Å and (d) 200 Å to 1400 Å. Shown also are the data of Henke et al.2 (dots), Lynch et al.14 (dashes), and Hagemann et al3 (dot–dash).

Fig. 24
Fig. 24

(a) Reflectance of silver vs wavelength at six incidence angles: 0, 45, 60, 75, 85, and 89°. (b) Normal incidence reflectance vs wavelength. The data of Lynch et al.14 (dashes) and Hagemann et al.13 (dot–dash) are shown for comparison.

Fig. 25
Fig. 25

Peak-to-peak intensity of Auger signal (arbitrary units) vs sputtering time for hafnium film.

Fig. 26
Fig. 26

Index of refraction for hafnium vs wavelength from (a) 0 Å to 200 Å and (b) 200 Å to 1400 Å and extinction coefficient from (c) 0 Å to 200 Å and (d) 200 Å to 1400 Å. Shown also are the data of Henke et al.2 (dots) and Weaver et al.4 for Ec (dashes) and Ec (dot–dash).

Fig. 27
Fig. 27

(a) Reflectance of hafnium vs wavelength at six incidence angles: 0, 45, 60, 75, 85, and 89°. (b) Normal incidence reflectance vs wavelength. The data of Weaver et al.4 for Ec (dashes) and Ec (dot–dash) are shown for comparison.

Fig. 28
Fig. 28

Peak-to-peak intensity of Auger signal (arbitrary units) vs sputtering time for tantalum film.

Fig. 29
Fig. 29

Index of refraction for tantalum vs wavelength from (a) 0 Å to 200 Å and (b) 200 Å to 1400 Å and extinction coefficient from (c) 0 Å to 200 Å and (d) 200 Å to 1400 Å. Shown also are the data of of Henke et al.2 (dots) and the data of Weaver et al6 (dashes).

Fig. 30
Fig. 30

(a) Reflectance of tantalum vs wavelength at six incidence angles: 0, 45, 60, 75, 85, and 89°. (b) Normal incidence reflectance vs wavelength. The data of Weaver et al.6 (dashes) are shown for comparison.

Fig. 31
Fig. 31

Peak-to-peak intensity of Auger signal (arbitrary units) vs sputtering time for tungsten film.

Fig. 32
Fig. 32

Index of refraction for tungsten vs wavelength from (a) 0 Å to 200 Å and (b) 200 Å to 1400 Å and extinction coefficient from (c) 0 Å to 200 Å and (d) 200 Å to 1400 Å. Shown also are the data of Henke et al.2 (dots) and Weaver et al.16 (dashes).

Fig. 33
Fig. 33

(a) Reflectance of tungsten vs wavelength at six incidence angles: 0, 45, 60, 75, 85, and 89°. (b) Normal incidence reflectance vs wavelength. The data of Weaver et al.16 (dashes) are shown for comparison.

Fig. 34
Fig. 34

Peak-to-peak intensity of Auger signal (arbitrary units) vs sputtering time for rhenium film.

Fig. 35
Fig. 35

Index of refraction for tungsten vs wavelength from (a) 0 Å to 200 Å and (b) 200 Å to 1400 Å and extinction coefficient from (c) 0 Å to 200 Å and (d) 200 Å to 1400 Å. Shown also are the data of Henke et al.2 (dots) and the data of Weaver et al.4 with Ec (dashes) and Ec (dot–dash).

Fig. 36
Fig. 36

(a) Reflectance of rhenium vs wavelength at six incidence angles: 0, 45, 60, 75, 85, and 89°. (b) Normal incidence reflectance vs wavelength. The data of Weaver et al.4 with Ec (dashes) and Ec (dot–dash) are shown for comparison.

Fig. 37
Fig. 37

Peak-to-peak intensity of Auger signal (arbitrary units) vs sputtering time for osmium film.

Fig. 38
Fig. 38

Index of refraction for osmium vs wavelength from (a) 0 Å to 200 Å and (b) 200 Å to 1400 Å and extinction coefficient from (c) 0 Å to 200 Å and (d) 200 Å to 1400 Å. Shown also are the data of Henke et al.2 (dots) Weaver et al.4 (dashes), and Cox et al.17 (dot–dash).

Fig. 39
Fig. 39

(a) Reflectance of osmium vs wavelength at six incidence angles: 0, 45, 60, 75, 85, and 89°. (b) Normal incidence reflectance vs wavelength. The data of Weaver et al.4 (dashes) and of Cox et al.17 (dot–dash) are shown for comparison.

Fig. 40
Fig. 40

Peak-to-peak intensity of Auger signal (arbitrary units) vs sputtering time for iridium film.

Fig. 41
Fig. 41

Index of refraction for iridium vs wavelength from (a) 0 Å to 200 Å and (b) 200 Å to 1400 Å and extinction coefficient from (c) 0 Å to 200 Å and (d) 200 Å to 1400 Å. Shown also are the data of Henke et al.2 (dots) and Weaver et al.11 (dashes).

Fig. 42
Fig. 42

(a) Reflectance of iridium vs wavelength at six incidence angles: 0, 45, 60, 75, 85, and 89°. (b) Normal incidence reflectance vs wavelength. The data of Weaver et al.11 (dashes) are shown for comparison.

Fig. 43
Fig. 43

Peak-to-peak intensity of Auger signal (arbitrary units) vs sputtering time for platinum film.

Fig. 44
Fig. 44

Index of refraction for platinum vs wavelength from (a) 0 Å to 200 Å and (b) 200 Å to 1400 Å and extinction coefficient from (c) 0 Å to 200 Å and (d) 200 Å to 1400 Å. Shown also are the data of Henke et al.2 (dots), Hunter et al.19 (dash), and Weaver20 (dot–dash).

Fig. 45
Fig. 45

(a) Reflectance of platinum vs wavelength at six incidence angles: 0, 45, 60, 75, 85, and 89°. (b) Normal incidence reflectance vs wavelength. The data of Hunter et al.19 (dash) and Weaver20 (dot–dash) are shown for comparison.

Fig. 46
Fig. 46

Peak-to-peak intensity of Auger signal (arbitrary units) vs sputtering time for gold film.

Fig. 47
Fig. 47

Index of refraction for gold vs wavelength from (a) 0 Å to 200 Å and (b) 200 Å to 1400 Å and extinction coefficient from (c) 0 Å to 200 Å and (d) 200 Å to 1400 Å. Shown also are the data of Henke et al.2 (dots), Weaver et al.4 (dashes), Zombeck et al.22 (dot–dash), Hagemann et al.13 (dot–long dash), and Canfield et al.22 (dot–dot–dot–dash).

Fig. 48
Fig. 48

(a) Reflectance of gold vs wavelength at six incidence angles: 0, 45, 60, 75, 85, and 89°. (b) Normal incidence reflectance vs wavelength. The data of Weaver et al.4 (dashes) and Canfield et al.22 (dot–dot–dot–dash) are shown for comparison.

Tables (16)

Tables Icon

Table I Optical Constants for Titanium

Tables Icon

Table II Optical Constants for Zirconium

Tables Icon

Table III Optical Constants for Niobium

Tables Icon

Table IV Optical Constants for Molybdenum

Tables Icon

Table V Optical Constants for Ruthenium

Tables Icon

Table VI Optical Constants for Rhodium

Tables Icon

Table VII Optical Constants for Palladium

Tables Icon

Table VIII Optical Constants for Silver

Tables Icon

Table IX Optical Constants for Hafnium

Tables Icon

Table X Optical Constants for Tantalum

Tables Icon

Table XI Optical Constants for Tungsten

Tables Icon

Table XII Optical Constants for Rhenium

Tables Icon

Table XIII Optical Constants for Osmium

Tables Icon

Table XIV Optical Consants for Iridium

Tables Icon

Table XV Optical Constants for Platinum

Tables Icon

Table XVI Optical Constants for Gold

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F I p I s I p + I s ,
F ( λ ) = 0 . 0412 + 2 . 087 × 10 4 · λ .

Metrics