Abstract

A simulated analysis is presented that shows that returns from a single-frequency space-borne lidar can be combined with data from conventional visible satellite imagery to yield profiles of aerosol extinction coefficients and the wind speed at the ocean surface. The optical thickness of the aerosols in the atmosphere can be derived from visible imagery. That measurement of the total optical thickness can constrain the solution to the lidar equation to yield a robust estimate of the extinction profile. The specular reflection of the lidar beam from the ocean can be used to determine the wind speed at the sea surface once the transmission of the atmosphere is known. The impact on the retrieved aerosol profiles and surface wind speed produced by errors in the input parameters and noise in the lidar measurements is also considered.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984), p. 510.
  2. Lidar Atmospheric Sounder and Altimeter, Earth Observing System Instrument Panel Report IId (NASA, Washington, DC., 1987), p. 91.
  3. RCA/Astro-Electronics, DMSP Tech. Op. Report, contract FO4701-81-C-0061, Princeton, NJ (1984), p. 30.
  4. J. D. Klett, “Stable Analytical Inversion Solution for Processing Lidar Returns,” Appl. Opt. 20, 211 (1981).
    [CrossRef] [PubMed]
  5. W. Hitschfeld, J. Bordan, “Errors Inherent in the Radar Measurement of Rainfall at Attenuating Wavelengths,” J. Meteorol. 11, 58 (1954).
    [CrossRef]
  6. Z. Ahmad, R. S. Fraser, “An Iterative Radiative Transfer Code for Ocean Atmosphere Systems,” J. Atmos. Sci. 39, 656 (1982).
    [CrossRef]
  7. R. S. Fraser, Y. J. Kaufman, R. L. Mahoney, “Satellite Measurement of Aerosol Mass and Transport,” Atmos. Environ. 18, 2577 (1984).
    [CrossRef]
  8. Y. J. Kaufman, “Atmospheric Effect on Spectral Signature-Measurements and Corrections,” IEEE Trans. Geosci. Remote Sensing 26, 441 (1988).
    [CrossRef]
  9. J. A. Weinman, M. Masutani, “Radiative Transfer Models of the Appearance of City Lights Obscured by Clouds Observed in Nocturnal Satellite Images,” J. Geophys. Res. 92, 5565 (1987).
    [CrossRef]
  10. F. Fernald, B. M. Herman, J. A. Reagan, “Determination of Aerosol Height Distributions by Lidar,” J. Appl. Meteorol. 11, 482 (1972).
    [CrossRef]
  11. M. Kaestner, “Lidar Inversion with Variable Backscatter/Extinction Ratios: Comment,” Appl. Opt. 25, 833 (1986).
    [CrossRef] [PubMed]
  12. P. Koepke, “Effective Reflectance of Oceanic Whitecaps,” Appl. Opt. 23, 1816 (1984).
    [CrossRef] [PubMed]
  13. C. Cox, W. Munk, “Measurements of the Roughness of the Sea Surface from the Sun’s Glitter,” J. Opt. Soc. Am. 44, 838 (1954).
    [CrossRef]
  14. C. S. Cox, “Measurements of the Slopes of High Frequency Wind Waves,” J Mar. Sci. 16, 199 (1958).
  15. A. Morel, “In-Water and Remote Measurements of Ocean Color,” Boundary Layer Meteorol, 18, 177 (1980).
    [CrossRef]
  16. J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical Distribution of Aerosol Extinction Cross Section and Inference of Aerosol Imaginary Index of Refraction by Lidar Technique,” J. Appl. Meteorol. 19, 426 (1980).
    [CrossRef]
  17. H. W. M. Salemenk, P. Schotanus, J. B. Bergwerff, “Quantitative Lidar at 532 nm for Vertical Extinction Profiles and the Effect of Relative Humidity,” Appl. Phys. B 34, 187 (1984).
    [CrossRef]
  18. C. J. Grund, E. W. Eloranta, “Measurements of Aerosol Backscatter Phase Function and Extinction by High Spectral Resolution Lidar,” in Technical Digest, Conference on Optical Remote Sensing of the Atmosphere (Optical Societyof America, Washington, DC, 1985), p. WC 11.
  19. C. M. R. Platt, A. C. Dilley, “Determination of Cirrus Particle Single Scattering Phase Function from Lidar and Solar Radiometric Data,” Appl. Opt. 23, 380 (1984).
    [CrossRef] [PubMed]
  20. C. J. Grund, “Measurement of Cirrus Cloud Properties of High Spectral Resolution Lidar,” Ph.D. Thesis, U. Wisconsin, Meteorology Department (1987).
  21. C. J. Grund, “Mie Theoretical Calculation of Scattering Properties of Sulfate Aerosols,” U. Wisconsin; personal communication (1987).
  22. J. W. Tukey, Exploratory Data Analysis (Addison-Wesley, Reading, MA, 1977).

1988 (1)

Y. J. Kaufman, “Atmospheric Effect on Spectral Signature-Measurements and Corrections,” IEEE Trans. Geosci. Remote Sensing 26, 441 (1988).
[CrossRef]

1987 (1)

J. A. Weinman, M. Masutani, “Radiative Transfer Models of the Appearance of City Lights Obscured by Clouds Observed in Nocturnal Satellite Images,” J. Geophys. Res. 92, 5565 (1987).
[CrossRef]

1986 (1)

1984 (4)

R. S. Fraser, Y. J. Kaufman, R. L. Mahoney, “Satellite Measurement of Aerosol Mass and Transport,” Atmos. Environ. 18, 2577 (1984).
[CrossRef]

H. W. M. Salemenk, P. Schotanus, J. B. Bergwerff, “Quantitative Lidar at 532 nm for Vertical Extinction Profiles and the Effect of Relative Humidity,” Appl. Phys. B 34, 187 (1984).
[CrossRef]

C. M. R. Platt, A. C. Dilley, “Determination of Cirrus Particle Single Scattering Phase Function from Lidar and Solar Radiometric Data,” Appl. Opt. 23, 380 (1984).
[CrossRef] [PubMed]

P. Koepke, “Effective Reflectance of Oceanic Whitecaps,” Appl. Opt. 23, 1816 (1984).
[CrossRef] [PubMed]

1982 (1)

Z. Ahmad, R. S. Fraser, “An Iterative Radiative Transfer Code for Ocean Atmosphere Systems,” J. Atmos. Sci. 39, 656 (1982).
[CrossRef]

1981 (1)

1980 (2)

A. Morel, “In-Water and Remote Measurements of Ocean Color,” Boundary Layer Meteorol, 18, 177 (1980).
[CrossRef]

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical Distribution of Aerosol Extinction Cross Section and Inference of Aerosol Imaginary Index of Refraction by Lidar Technique,” J. Appl. Meteorol. 19, 426 (1980).
[CrossRef]

1972 (1)

F. Fernald, B. M. Herman, J. A. Reagan, “Determination of Aerosol Height Distributions by Lidar,” J. Appl. Meteorol. 11, 482 (1972).
[CrossRef]

1958 (1)

C. S. Cox, “Measurements of the Slopes of High Frequency Wind Waves,” J Mar. Sci. 16, 199 (1958).

1954 (2)

W. Hitschfeld, J. Bordan, “Errors Inherent in the Radar Measurement of Rainfall at Attenuating Wavelengths,” J. Meteorol. 11, 58 (1954).
[CrossRef]

C. Cox, W. Munk, “Measurements of the Roughness of the Sea Surface from the Sun’s Glitter,” J. Opt. Soc. Am. 44, 838 (1954).
[CrossRef]

Ahmad, Z.

Z. Ahmad, R. S. Fraser, “An Iterative Radiative Transfer Code for Ocean Atmosphere Systems,” J. Atmos. Sci. 39, 656 (1982).
[CrossRef]

Bergwerff, J. B.

H. W. M. Salemenk, P. Schotanus, J. B. Bergwerff, “Quantitative Lidar at 532 nm for Vertical Extinction Profiles and the Effect of Relative Humidity,” Appl. Phys. B 34, 187 (1984).
[CrossRef]

Bordan, J.

W. Hitschfeld, J. Bordan, “Errors Inherent in the Radar Measurement of Rainfall at Attenuating Wavelengths,” J. Meteorol. 11, 58 (1954).
[CrossRef]

Cox, C.

Cox, C. S.

C. S. Cox, “Measurements of the Slopes of High Frequency Wind Waves,” J Mar. Sci. 16, 199 (1958).

Dilley, A. C.

Eloranta, E. W.

C. J. Grund, E. W. Eloranta, “Measurements of Aerosol Backscatter Phase Function and Extinction by High Spectral Resolution Lidar,” in Technical Digest, Conference on Optical Remote Sensing of the Atmosphere (Optical Societyof America, Washington, DC, 1985), p. WC 11.

Fernald, F.

F. Fernald, B. M. Herman, J. A. Reagan, “Determination of Aerosol Height Distributions by Lidar,” J. Appl. Meteorol. 11, 482 (1972).
[CrossRef]

Fraser, R. S.

R. S. Fraser, Y. J. Kaufman, R. L. Mahoney, “Satellite Measurement of Aerosol Mass and Transport,” Atmos. Environ. 18, 2577 (1984).
[CrossRef]

Z. Ahmad, R. S. Fraser, “An Iterative Radiative Transfer Code for Ocean Atmosphere Systems,” J. Atmos. Sci. 39, 656 (1982).
[CrossRef]

Grund, C. J.

C. J. Grund, “Measurement of Cirrus Cloud Properties of High Spectral Resolution Lidar,” Ph.D. Thesis, U. Wisconsin, Meteorology Department (1987).

C. J. Grund, “Mie Theoretical Calculation of Scattering Properties of Sulfate Aerosols,” U. Wisconsin; personal communication (1987).

C. J. Grund, E. W. Eloranta, “Measurements of Aerosol Backscatter Phase Function and Extinction by High Spectral Resolution Lidar,” in Technical Digest, Conference on Optical Remote Sensing of the Atmosphere (Optical Societyof America, Washington, DC, 1985), p. WC 11.

Herman, B. M.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical Distribution of Aerosol Extinction Cross Section and Inference of Aerosol Imaginary Index of Refraction by Lidar Technique,” J. Appl. Meteorol. 19, 426 (1980).
[CrossRef]

F. Fernald, B. M. Herman, J. A. Reagan, “Determination of Aerosol Height Distributions by Lidar,” J. Appl. Meteorol. 11, 482 (1972).
[CrossRef]

Hitschfeld, W.

W. Hitschfeld, J. Bordan, “Errors Inherent in the Radar Measurement of Rainfall at Attenuating Wavelengths,” J. Meteorol. 11, 58 (1954).
[CrossRef]

Kaestner, M.

Kaufman, Y. J.

Y. J. Kaufman, “Atmospheric Effect on Spectral Signature-Measurements and Corrections,” IEEE Trans. Geosci. Remote Sensing 26, 441 (1988).
[CrossRef]

R. S. Fraser, Y. J. Kaufman, R. L. Mahoney, “Satellite Measurement of Aerosol Mass and Transport,” Atmos. Environ. 18, 2577 (1984).
[CrossRef]

Klett, J. D.

Koepke, P.

Mahoney, R. L.

R. S. Fraser, Y. J. Kaufman, R. L. Mahoney, “Satellite Measurement of Aerosol Mass and Transport,” Atmos. Environ. 18, 2577 (1984).
[CrossRef]

Masutani, M.

J. A. Weinman, M. Masutani, “Radiative Transfer Models of the Appearance of City Lights Obscured by Clouds Observed in Nocturnal Satellite Images,” J. Geophys. Res. 92, 5565 (1987).
[CrossRef]

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984), p. 510.

Morel, A.

A. Morel, “In-Water and Remote Measurements of Ocean Color,” Boundary Layer Meteorol, 18, 177 (1980).
[CrossRef]

Munk, W.

Platt, C. M. R.

Reagan, J. A.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical Distribution of Aerosol Extinction Cross Section and Inference of Aerosol Imaginary Index of Refraction by Lidar Technique,” J. Appl. Meteorol. 19, 426 (1980).
[CrossRef]

F. Fernald, B. M. Herman, J. A. Reagan, “Determination of Aerosol Height Distributions by Lidar,” J. Appl. Meteorol. 11, 482 (1972).
[CrossRef]

Salemenk, H. W. M.

H. W. M. Salemenk, P. Schotanus, J. B. Bergwerff, “Quantitative Lidar at 532 nm for Vertical Extinction Profiles and the Effect of Relative Humidity,” Appl. Phys. B 34, 187 (1984).
[CrossRef]

Schotanus, P.

H. W. M. Salemenk, P. Schotanus, J. B. Bergwerff, “Quantitative Lidar at 532 nm for Vertical Extinction Profiles and the Effect of Relative Humidity,” Appl. Phys. B 34, 187 (1984).
[CrossRef]

Spinhirne, J. D.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical Distribution of Aerosol Extinction Cross Section and Inference of Aerosol Imaginary Index of Refraction by Lidar Technique,” J. Appl. Meteorol. 19, 426 (1980).
[CrossRef]

Tukey, J. W.

J. W. Tukey, Exploratory Data Analysis (Addison-Wesley, Reading, MA, 1977).

Weinman, J. A.

J. A. Weinman, M. Masutani, “Radiative Transfer Models of the Appearance of City Lights Obscured by Clouds Observed in Nocturnal Satellite Images,” J. Geophys. Res. 92, 5565 (1987).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (1)

H. W. M. Salemenk, P. Schotanus, J. B. Bergwerff, “Quantitative Lidar at 532 nm for Vertical Extinction Profiles and the Effect of Relative Humidity,” Appl. Phys. B 34, 187 (1984).
[CrossRef]

Atmos. Environ. (1)

R. S. Fraser, Y. J. Kaufman, R. L. Mahoney, “Satellite Measurement of Aerosol Mass and Transport,” Atmos. Environ. 18, 2577 (1984).
[CrossRef]

Boundary Layer Meteorol (1)

A. Morel, “In-Water and Remote Measurements of Ocean Color,” Boundary Layer Meteorol, 18, 177 (1980).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing (1)

Y. J. Kaufman, “Atmospheric Effect on Spectral Signature-Measurements and Corrections,” IEEE Trans. Geosci. Remote Sensing 26, 441 (1988).
[CrossRef]

J Mar. Sci. (1)

C. S. Cox, “Measurements of the Slopes of High Frequency Wind Waves,” J Mar. Sci. 16, 199 (1958).

J. Appl. Meteorol. (2)

F. Fernald, B. M. Herman, J. A. Reagan, “Determination of Aerosol Height Distributions by Lidar,” J. Appl. Meteorol. 11, 482 (1972).
[CrossRef]

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical Distribution of Aerosol Extinction Cross Section and Inference of Aerosol Imaginary Index of Refraction by Lidar Technique,” J. Appl. Meteorol. 19, 426 (1980).
[CrossRef]

J. Atmos. Sci. (1)

Z. Ahmad, R. S. Fraser, “An Iterative Radiative Transfer Code for Ocean Atmosphere Systems,” J. Atmos. Sci. 39, 656 (1982).
[CrossRef]

J. Geophys. Res. (1)

J. A. Weinman, M. Masutani, “Radiative Transfer Models of the Appearance of City Lights Obscured by Clouds Observed in Nocturnal Satellite Images,” J. Geophys. Res. 92, 5565 (1987).
[CrossRef]

J. Meteorol. (1)

W. Hitschfeld, J. Bordan, “Errors Inherent in the Radar Measurement of Rainfall at Attenuating Wavelengths,” J. Meteorol. 11, 58 (1954).
[CrossRef]

J. Opt. Soc. Am. (1)

Other (7)

C. J. Grund, “Measurement of Cirrus Cloud Properties of High Spectral Resolution Lidar,” Ph.D. Thesis, U. Wisconsin, Meteorology Department (1987).

C. J. Grund, “Mie Theoretical Calculation of Scattering Properties of Sulfate Aerosols,” U. Wisconsin; personal communication (1987).

J. W. Tukey, Exploratory Data Analysis (Addison-Wesley, Reading, MA, 1977).

R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984), p. 510.

Lidar Atmospheric Sounder and Altimeter, Earth Observing System Instrument Panel Report IId (NASA, Washington, DC., 1987), p. 91.

RCA/Astro-Electronics, DMSP Tech. Op. Report, contract FO4701-81-C-0061, Princeton, NJ (1984), p. 30.

C. J. Grund, E. W. Eloranta, “Measurements of Aerosol Backscatter Phase Function and Extinction by High Spectral Resolution Lidar,” in Technical Digest, Conference on Optical Remote Sensing of the Atmosphere (Optical Societyof America, Washington, DC, 1985), p. WC 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Left curve and lower axis: profile of the SNR that may be expected in a single lidar return if the lidar system described in Table I were to be placed on a spacecraft 830 km above the earth.2 Right curve and upper axis: profile of the Rayleigh extinction coefficient for a purely gaseous atmosphei re measured at 0.53 μm.

Fig. 2
Fig. 2

Reflectance of the wind roughened sea at a wavelength of 0.53 μm as a function of the wind speed at a height of 10 m, u10, from Eq. (15),—. The curves are applicable to nadir observation, ψ = 0°, and those made at 15° with respect to nadir, ψ = 15°. The effect of errors in the optical thickness, – – – –. Erroneous estimates of δτ = −0.1 produce the upper curves, whereas δτ = 0.1 produce the lower dashed curves. Envelopes that correspond to the probable forecast errors, δu10 = ±3 m/s, –.–.–.

Tables (5)

Tables Icon

Table I Tentative Parameters of a Satellite-Borne Lidar3

Tables Icon

Table II Normalized Backscatter Phase function

Tables Icon

Table III Comparison of Particle Extinction Profiles: Effect of Errors In Total Optical Thickness Determination

Tables Icon

Table IV Comparison of Particle Extinction Profiles Effect of Errors In Backscatter Phase Function Determination

Tables Icon

Table V Comparison of Particle Extinction Profiles: Effects of Random Noise and Median Filtering

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

P ( z ) = P 0 ( c d t 2 ) A σ ( z ) a ( z ) P ( π , z ) 4 π z 2 exp [ - 2 z 0 z σ ( z ) d x ] ,
S ( z ) = z 2 P ( z ) / const .
S ( z ) = σ k ( z ) exp [ - 2 z 0 z σ ( z ) d z ] .
ln S ( z ) = k ln σ ( z ) - 2 z 0 z σ ( z ) d z .
d [ 1 σ ( z ) ] d z + d ln S ( z ) k σ ( z ) d z = - 2 k .
σ ( z ) = [ S ( z ) / S ( z 0 ) ] 1 / k σ 0 - 1 - 2 k z 0 z [ S ( z ) / S ( z 0 ) ] 1 / k d z
σ ( z ) = [ S ( z ) / S ( z g ) ] 1 / k σ g - 1 + 2 k z z g [ S ( z ) / S ( z g ) ] 1 / k d z
σ 0 = 1 - exp ( - 2 τ / k ) 2 k z 0 z g [ S ( z ) / S ( z 0 ) ] 1 / k d z
σ g = exp ( 2 τ / k ) - 1 2 k z 0 z g [ S ( z ) / S ( z g ) ] 1 / k d z
σ ( z ) = k S ( z ) 1 / k · [ 1 - exp ( 2 τ / k ) ] 2 [ z z g S ( z ) 1 / k d z + exp ( - 2 τ / k ) · z 0 z S ( z ) 1 / k d z ] .
P ( z ) = const [ a R ( z ) P R ( π , z ) + a P ( z ) P P ( π , z ) ] 4 π z 2 · exp { - 2 z 0 z [ σ R ( z ) + σ P ( z ) ] d z } ,
S ( z ) = [ α ( z ) σ R ( z ) + σ P ( z ) ] a P ( z ) [ P P ( π , z ) / 4 π ] · exp { - 2 z 0 z [ σ R ( z ) + σ P ( z ) ] d z } ,
S ˜ ( z ) = 4 π S ( z ) exp { - 2 z 0 z [ α ( z ) - 1 ] σ R ( z ) d z } a P ( z ) P P ( π , z ) = u ( z ) exp [ - 2 z 0 z u ( z ) d z ] ,
τ = z 0 z g [ σ R ( z ) + σ P ( z ) ] d z = τ R + τ P .
σ P I ( z ) = - α ( z ) σ R ( z ) + S ˜ ( z ) · ( 1 - exp { - 2 [ τ + z 0 z g η ( z ) d z ] } ) [ 2 ( z z g S ˜ ( z ) d z + exp { - 2 [ τ + z 0 z g η ( z ) d z ] } · z 0 z S ˜ ( z ) d z ) ]
σ ˜ P ( z ) = τ P · σ P I ( z ) / z 0 z g σ P I ( z ) d z .
σ P I I ( z ) = ( 4 π const z 2 P ( z ) exp { 2 z 0 z [ σ ˜ P ( z ) + σ R ( z ) d z ] } - a R ( z ) · P R ( π , z ) · σ R ( z ) ) a P ( z ) P P ( π , z ) .
R = W · R eff + ( 1 - W ) · R s + ( 1 - W · R eff ) · R u .
R eff = 0.220 , u 10 9 m / s , R eff = 0.231 - 0.0012 u 10 , 9 u 10 25 m / s ,
W = 3.3 u 10 3.48 × 10 - 6 ,             u 10 25 m / s .
R S ( ψ ) = 0.2 / π S 2 , ψ = 0 ° , R S ( ψ ) = ( 0.02 / π S ) exp ( - ψ 2 / S 2 ) , ψ = 15 ° ,
S 2 = 0.022 log 10 ( u 10 ) + 0.012 , u 10 8 m / s , S 2 = 0.204 log 10 ( u 10 ) - 0.151 , 8 u 10 14 m / s ,

Metrics